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CHAPTER 1 EXPLORE ABBERANT MDIG AND C-MYC SIGNALING CIRCUIT IN
MULTIPLE MYELOMA

Introduction

Multiple myeloma (MM) is a malignant neoplasm of plasma cells localized within the
bone marrow (BM) compartment and ranked second in prevalence of all hematopoietic
malignancies. In 2014, there were around 24,000 and 110,000 new cases in U.S and
worldwide, respectively. MM can occur de novo or from premalignant monoclonal
gammopathy of undetermined significance (MGUS), which is characterized by abnormal
proliferation of plasma cells and increased monoclonal immunoglobulins. In the past decade,
large-scale genomics studies have determined genetic landscape of MM and identified
abnormal genetic events present in various disease stages, from MGUS to smoldering
multiple myeloma (SMM), active MM and relapsed MM.

Multiple “omics” technologies allow us to interrogate the alterations in MM cells from
multiple aspects, including epigenetic regulatory machinery, global protein networks and
kinase activities. Accumulating evidence has delineated a higher level complexity of MM
pathogenesis that requires extensive interactions among oncogenic signaling pathways. The
unique BM milieu is vital for the longevity of myeloma cells by providing various supportive
BM cells and soluble factors. Among these driving forces, one of the most important factors
is the interleukin-6 (IL-6) cytokine. After binding to its receptor (IL-6R) and recruiting a signal
transducer, GP130 (also known as CD130 or IL-6ST), IL-6 can activate Janus Kinase
(JAK)/signal transducer and activator of transcription (STAT), AKT and mitogen-activated
protein kinase (MAPK) pathways to promote proliferation, survival and drug resistance of the
MM cells.

A hallmark of MM pathogenesis is the mutation- or overexpression-induced C-MYC

activation. C-MYC is a well-defined onco-protein involved in many types of human cancers.
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As an essential transcription factor, C-MYC upregulates transcription of genes responsible
for cell growth, proliferation and maintenance of cancer cell stemness. In MM, C-MYC
overexpression can distinguish active MM from premalignant MGUS. In addition, activated
C-MYC has been shown to sustain the survival of myeloma cells. More interestingly, a recent
study indicates that crosstalk between the IL-6 pathway and C-MYC results in a significant
acceleration of MM pathogenesis. However, the underlying mechanisms of this oncogenic
interaction remain unclear.

As a C-MYC-induced protein, MDIG (mineral dust-induced gene, also known as
mina53, MINA, or NO52) functions as a histidyl hydroxylase and potentially a lysine-specific
demethylase, which regulates gene transcription through modifying the tri-methylated lysine
9 residue on histone 3 (H3K9me3). Consistent with this function, MDIG is found to be
exclusively localized in the nucleus of various cell types. Some studies have demonstrated
that MDIG exerts a strong immune-regulatory function by promoting differentiation of certain
T helper (Th) cells, including Thl and Thl7 cells. Overexpression of MDIG has been
observed in many types of human cancer, including lung cancer, colon cancer, gastric
carcinoma, etc.. Meanwhile, MDIG has been shown to be able to promote cancer cell
proliferation.  Furthermore, MDIG overexpression has been observed in various B cell-
derived malignancies among major human lymphoma subtypes, suggesting that MDIG may
contribute to C-MYC-induced tumorigenesis in MM.

Some epidemiological studies have provided hints for potential risk factors and novel
approaches to study the pathogenesis of MM. Several earlier studies suggested that
environmental exposures to industrial or agricultural products, such as benzene, petroleum
products, and pesticides, may contribute to the development of MM. More importantly, some
recent cohort studies on the first responders, reconstruction workers and volunteers of the

World_Trade Center (WTC) after the terrorist attack on September 11, 2001, provided
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evidence linking inhalation of the WTC dust to MM. However, there are no previous studies
revealing the potential carcinogenic effect of WTC dust or how WTC dust causes malignant
transformation of the mature plasma B cells.

In this chapter, we provide evidence revealing that WTC dust is potent in perturbing
the intracellular signaling pathways by inducing MDIG in both normal B cells and MM cells
and further demonstrating that overexpression of MDIG is significantly associated with the
malignant transformation of MGUS to active MM, disease exacerbation and poor clinical
outcomes. Biochemical studies unraveled that MDIG directly interacts with C-MYC and JAK1
proteins in MM cells, which contributes to the hyperactivation of the JAK1 and STAT3
signaling important for cell survival, proliferation and development of drug resistance of the
MM cells. Taken together, our studies suggest that MDIG may serve as a key mediator for
MM associated with WTC dust exposure and potential diagnosis/prognosis marker of MM.
Materials and methods

Cells and reagents—Human MM cell lines, NCI-H929 and MMLS, bronchial epithelial
cell line BEAS-2B and normal B cell line C5B7 were purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA) and maintained in ATCC-recommended culture
conditions. Inhibitor of C-MYC (10058-F4) and cycloheximide (CHX) were purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA). WTC dust was provided by Dr. Kenneth Reuhl at
the Environmental and Occupational Health Sciences Institute of the Rutgers University.

siRNA transfection—Transfections were performed using Lipofectamine RNAIMAX™M
(Invitrogen) according to manufacturer's protocol. Fifty nM of siRNAs were used for
transfection followed by 48-hour incubation. Control siRNA, MDIG siRNAs and C-MYC
siRNAs were all purchased from Qiagen (Valencia, CA, USA).

Immunohistochemistry  (IHC)—Tissue microarray slides, T293 and BM483Db,

containing__multiple _myeloma samples and non-cancerous bone marrow tissue were

www.manaraa.com



purchased from US Biomax, Inc (Rockville, MD). IHC staining was performed as previously
described.30 Briefly, the slides were stained overnight at 4°C with mouse anti-human MDIG
antibody (Invitrogen) at 1:50 dilution followed by biotinylated goat anti-mouse secondary
antibody (Dako Denmark A/S, Glostrup, Denmark) at 1:200 dilution for 2 hours at room
temperature. The slides were then incubated with ABC reagent and DAB (Vector Laboratories,
Inc. Burlingame, CA), counter stained with hematoxylin and mounted with entellan. All images
were captured using a Nikon Eclipse Ti-S Inverted microscope (Mager Scientific, Dexter, MI).
Cut-offs between positive and negative cells were determined according to previously
characterized MDIG-expressing breast cancer samples. Four random images were taken for
each sample and both positive and negative cells were counted using ImageJ 1.48v
(http://imagej.nih.gov/ij/). MDIG expression status of all samples was classified into four
grades based on the percentage of positively-stained cells. Strongly positive: over 50%;
moderately positive: between 50% and 25%; weakly positive: between 25% and 5%; negative:
less than 5%.

Immunoblotting and Immunoprecipitation (IP)—Immunoblotting and IP analysis were
performed as previously reported 40. NE-PER Nuclear Cytoplasmic Extraction KIT (Thermo
Scientific Pierce, Rockford, IL, USA) was used to isolate nuclear proteins. Densitometric
analysis of CHX-treated samples was completed using ImageJ 1.48v
(http://imagej.nih.gov/ij/). When detecting C-MYC bands in IP samples, HRP-conjugated
protein A (EMD Millipore, Temecula, CA, USA) was used to minimize the background noise
caused by IgG heavy chain. Primary antibodies against phospho-AKT (Ser473), total AKT,
phospho-STAT3 (Ser727), phospho-STAT3 (Tyr705), total STAT3, phospho-JAK1 (Tyr1022),
total JAK1, GAPDH, actin and all secondary antibodies were purchased from Cell Signaling
Technology (Danvers, MA, USA). Antibodies against GP130, IL-6R and methylated-lysine

were _purchased_from Abcam (Cambridge, MA). Antibodies against C-MYC and lamin A/C
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were purchased from Santa Cruz Biotechnology (Dallas, Texas, USA). MDIG (mouse)
antibody was ordered from Invitrogen. Distinct antibodies used for IP include MDIG (rabbit)
and C-MYC (mouse) from Abcam (Cambridge, MA, USA), C-MYC (rabbit) from Cell Signaling
Technology (Danvers, MA, USA), JAK1 (rabbit) from Santa Cruz Biotechnology (Dallas,
Texas, USA). All presented data are representatives of at least 3 independent experiments.

Confocal immunofluorescence (IF) analysis—For IF staining, 106 cells were
centrifuged, fixed by 4% formaldehyde for 15 min, permeabilized by 0.3% Triton X-100 and
blocked in PBS containing 5% normal goat serum and 0.1% Tween 20 for 1 hour at room
temperature. Then they were incubated with primary antibodies, anti-JAK1 (rabbit, Santa
Cruz Biotechnology) and anti-MDIG (mouse, Invitrogen) overnight at 4°C and with Invitrogen
secondary antibodies, Alexa Fluor 488-linked antibody (goat anti-mouse) and Alexa Fluor
594-linked antibody (goat anti-rabbit) for 1 h at room temperature in dark. All antibodies were
used at 1:100 dilutions. Prolong Gold™ antifade reagent with DAPI (Invitrogen) was used to
preserve the samples. Co-localization of JAK1 and MDIG was detected by Zeiss LSM 780
confocal microscope (Carl Zeiss Microscopy, Jena, Germany). Pinhole size of 60 um was
used while thresholds for laser power, master gain and digital gain were determined by non-
specific binding controls. DAPI, Alexa Fluor 488 and Alexa Fluor 594 were excited at 405 nm,
488 nm and 595 nm and corresponding fluorescence emissions were detected at 495 nm,
563 nm and 640 nm via 3 independent channels. All photos were processed using ZEN 2012
SP1 64 bit software (Carl Zeiss Microscopy, Jena, Germany).

PCR—Total RNAs were extracted using TRIzol™ Reagent (Life Technologies, Grand
Island, NY, USA) and their integrity was assessed by 18S and 28S ribosomal RNAs. For
reverse transcription PCR, AccessQuick™ RT-PCR system from Promega (Madison, WI)
was used. The primers for MDIG are: 5-TCA TGT CGG GCC TAA GAG AC-3' and 5-GGC

ATT TGA TTC TGC AAA GG-3', which amplifies a 1,510 bp DNA fragment covering the whole

www.manaraa.com



coding region of the MDIG gene. Primers for GAPDH are: 5'-CTG AAC GGG AAG CTC ACT
GGC ATG GCC TTC-3' and 5-CAT GAG GTC CAC CAC CCT GTT GCT GTA GCC-3'. For
real-time PCR, one pg total RNAs were reverse-transcribed using High-Capacity cDNA
Reverse Transcription Kit™ (Applied Biosystems, Waltham, MA, USA) and 1:20 diluted. Jak1
and ACTB Tagman Gene Expression Assays (Best Coverage™) were purchased from
Applied Biosystems (Waltham, MA, USA). Samples were run in triplicates, quantified by AACt
method with actin as reference gene and normalized to “Blank” group. Final results were
shown as mean + SD.

Mass spectrometry and proteomics analysis—Proteomics profiling of binding partners
were performed as previously reported. Briefly, samples were subject to co-
immunoprecipitation, 1D-SDS-PAGE separation, in-gel digestion, peptide purification and
HPLC-ESI-MS/MS analysis. Protein identity was determined by MaxQuant™ software.

Biostatistics analysis— Protein interaction network analysis was completed using
Gene Ontology database and visualized by Cytoscape™ 3.2. Binding proteins were first
sorted according to their biological processes and further refined manually by merging
repeating and redundant categories. Gene expression data were accessed through Multiple
Myeloma Genomics Portal (https://www.broadinstitute.org/mmgp/home) for GSE6477 and
through GEO for GSE39754 and GSE2658 before being processed and visualized using R
project with ggplot2 package. Survival analysis in Figure 1.3E was performed using Kaplan-
Meier method and the difference between 2 cohorts were determined using log-rank test. In
Figure 1.3C and 1.3D, differences of mRNA levels between patient cohorts were calculated
using one-way ANOVA and p-values were adjusted by Holm method. All other mRNA
expression comparisons were performed using two-tailed t-test. Considering that expression
levels of related genes are not always strictly linear to each other, we conducted “Force Rank”

co-amplification_analysis. A p-value less than 0.05 is considered statistically significant.
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Figure 1.1 WTC dust induces MDIG in BEAS-2B cells (A),
C5B7 cells (normal B cells, B), NCI-H929 cells (MM cell line,
C), and MM1S cells (MM cell line, D). All of the cells were
treated with the indicated concentrations of WTC dust for 6 h,
followed by Western blotting (top two panels) and RT-PCR
(bottom two panels). Each panel is representative of at least

three independent experiments.

Results

WTC dust induces
MDIG in bronchial epithelial
cells, B cells and MM cells.
The adverse effect of WTC
dust on the respiratory system,
including airway inflammation,

impairment of the pulmonary

function, airway hyperactivity,

asthma, and sarcoid-like
granulomatous pulmonary
disease, had been well-

established . Indeed, we noted

that WTC dust is highly
capable of inducing MDIG
expression in the bronchial

epithelial cell line, BEAS-2B cells, in concentrations ranged from 0.15 to 2.4 pg/ml (Fig.1.1A).

Since concerns had been arisen about the potential for increased risk of MM among WTC

responders, we also investigated the capability of WTC dust on the induction of MDIG in

normal B cells using a B cell line C5B7. Similar to what we observed in BEAS-2B cells, we

noted a dose-dependent induction of MDIG protein and mRNA by WTC dust in C5B7 cells

(Fig.1.1B). In two MM cell lines NCI-H929 and MM1S, although we did not detect induction

of MDIG protein, a pronounced induction of MDIG mRNA by WTC dust was observed

(Figs.1.1C and 1.1D). These data, thus, clearly suggest that in addition to damage the
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respiratory system through direct interaction, WTC dust or its components may also influence

the intracellular signaling of the B cells and the MM cells.

Increased MDIG expression in the bone marrow (BM) of the MM patient. To

determine whether MDIG expression is clinically relevant for MM, we evaluated MDIG protein

levels in the BM specimens of MM patients through immunohistochemistry (IHC).

In total of

16 cases of MM BM biopsies examined, 8 samples exhibited strong staining of MDIG proteins
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Figure 1.2 Increased MDIG expression in human MM samples. (A) Representative IHC images
of MDIG expression in bone marrow (BM) of MM patients (n=16), BM of non-hematological
cancer patients (n = 11), and BM of healthy donors (n =4). Magnification: 40x, scale bar: 50um.
Strongly positive: over 50%; moderately positive: between 50% and 25%; weakly positive:
between 25% and 5%; negative: less than 5%. (B) Summary of the IHC results.
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as judged by the criteria that more than 50% of cells are MDIG positive, 6 samples showed
moderate or weak MDIG staining and 2 samples are MDIG negative (Figs.1.2A and 1.2B).
We also checked another set of BM specimens collected from 4 healthy donors and 11
patients with other non-hematological cancers. MDIG protein was not detected in all 4 healthy
donors’ BM specimens and 8 out of 11 cases of non-hematological cancer patients. Three
BM specimens from patients with non-hematological cancers showed weak positive of MDIG
staining (Figs.1.2A and 1.2B).

Both MDIG and C-MYC are associated with disease aggressiveness of MM.
There are several stages during disease development, including premalignant MGUS,
asymptomatic smoldering MM (SMM), symptomatic MM, and relapsed MM. It has been well-
accepted that C-MYC activation is a hallmark of MM pathogenesis, especially in the early
malignant transformation from MGUS to active MM. C-MYC has also been implicated in the
up-regulation of MDIG. Overexpression of MDIG has been observed in many types of human
malignancies, but its potential role in C-MYC-related MM pathogenesis remains unknown.
To determine whether MDIG contributes to C-MYC-induced MM pathogenesis, we examined
expression levels of MDIG and C-MYC in MM patients. We noted that both C-MYC and MDIG
MRNAs are significantly up-regulated in newly diagnosed MM patients when compared to
healthy donors (Figs.1.3A and 1.3B). Further analysis of patients at continuous stages during
MM development has demonstrated a robust elevation trend of both C-MYC and MDIG
(Figs.1.3C and 1.3D). Statistically significant increases of MDIG mRNA, from MGUS to active
MM and from SMM to relapsed MM were noted (Fig.1.3D), suggesting a positive correlation
between MDIG expression and malignant transformation, disease progression and relapse
of MM.

The involvement of MDIG in MM pathogenesis is further supported by survival analysis

of 559 MM _patients. High_level of MDIG expression is significantly correlated with the poor

www.manaraa.com



10

Relative Myc (Log2)
Relative Mdig (Log2)
Relative Myc (Log2)
-
—Ml—
Relative Mdig (Log2)
{LF
1
Y ——

DN A DA SN AR, AN
< S o QS RAVANRY NS
QW NN SIS SPTS £

F S SIS SES & SES S &
L < Q*éb A ‘Z“ Q-Q} < &
E Overall survival (OS) of 559 MM patients

1.00
z Mdiglow 442
3 075
©
Q0
2
050
2 0.004145 Mdig 117
> =0.
5 025 R =2.59
a 95% CI [1.35-4.95]

0

0O 10 20 30 40 50 60 70
Time (Months)

Figure 1.3 Overexpression of MDIG and C-MYC is associated with disease progression and poor
prognosis of MM. (A) Box plot of relative level of C-MYC mRNA in newly diagnosed MM patients
and healthy donors (GES39754, n = 176); (B) Box-plot of relative level of MDIG in newly
diagnosed MM patients and healthy donors (GES39754, n = 176); (C) Expression level of C-MYC
mMRNA in CD138+ plasma cells from healthy donors and MM patients at various stages
(GSE6477,n = 163); (D) Expression level of MDIG mRNA in CD138+ plasma cells from healthy
donors and MM patients at various stages (GSE6477, n = 163). In the plots, boxes denote the
inter-quartile range (25%to 75%), bars represent medians and whiskers indicate up to 1.5x the
inter-quartile range which cover 95% of all samples. Outliers are indicated by the black dots.
Sample sizes of each group are annotated in parentheses and expression levels are displayed in
log2 scale. (**p<0.001, ** p<0.01). (E) Kaplan-Meier (KM) survival curve of 559 MM patients
(GSE2658) stratified by their MDIG expression levels. Sample sizes of each group, log-rank p-
value, hazard ratio and 95% confidence intervals are displayed in the figure. Tick marks on each
arm represent censored samples.

overall survival of the MM patients, even though higher percentage of patients from “MDIG

high” group (82%, 96/117) received intensive therapies than those from “MDIG low” group
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(57.7%, 255/442) (Fig.1.3E). Taken together, all above data demonstrate a strong positive
correlation of MDIG and C-MYC to the pathogenesis and aggressiveness of MM.

MDIG acts as a key interaction partner of C-MYC in MM cells. In order to decipher
inter-regulation between MDIG and C-MYC in MM cells, proteomics study was performed on
MM cell line NCI-H929 cells to screen their interaction partners, respectively. A total of 224
and 203 proteins were identified as significant binding partners of MDIG and C-MYC,
respectively. Among these, 110 binding partners are shared by MDIG and C-MYC (Fig.1.4A).
Strikingly, physical binding between MDIG and C-MYC was detected by mass-spectrometry
in NCI-H929 cells (Fig.1.4B), which was further validated by co-IP assay in both NCI-H929
and MM1S cells (Fig.1.4C), implying that MDIG might be assembled into functional protein
complexes together with C-MYC and directly participate in C-MYC-induced oncogenesis for

the development of MM. Subsequent network analysis highlighted some major cellular events
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Figure 1.4 MDIG directly binds to and extensively cooperates with C-MYC. (A) Proteomic
identification of the C-MYC-MDIG-centered protein interaction network following C-MYC and
MDIG pull-downs. All determined proteins, excluding MDIG and C-MYC themselves, are
categorized as Myc-only (blue), MDIG-only (green) and Shared (cyan) groups while total
numbers of each group are listed in the Venn diagram; (B) A chart summarizes all the unique
peptide sequences of MDIG detected by mass spectrometry in C-MYC pull-downs; (C) Co-
immunoprecipitation (co-IP) assay shows direct physical binding of C-MYC and MDIG in NCI-
H929 and MM1S cells; (D) Summaries of top biological processes that involve interaction
partners of C-MYC and MDIG. All determined subjects are interrogated by Gene Ontology
database and are sorted based on biological processes they participate in.

upon which C-MYC and MDIG are most likely to impose their impact (Fig.1.4D). Summary of
sorted binding partners is available in Table 1.1. The shared binding partners are mainly
clustered in 4 areas: gene expression, post-transcriptional regulation of gene expression,
MRNA processing, mMRNA transport. It is not surprising that C-MYC-only binding partners are
actively involved in all 4 biological processes and MDIG-only binding partners involved in
former 2 processes considering the well-established role of C-MYC as an essential
transcription factor and MDIG as an important epigenetic regulator. Collectively, these data

provide a strong rationale that MDIG is a core direct interaction partner of C-MYC and is most
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likely to collaborate in gene expression-related functions in MM cells. Notably, MDIG-only

binding partners are also enriched in proteins important for cellular responses to cytokine and

MDIG-only

Shared

MYC-only

Gene expression

Post transcriptional
regulation

mRNA processing

mMRNA transport

DNA damage repair

Response to cytokine

Antigen processing &

presentation

PRMTS5, HNRNPULL,
CNOT1, CNOTS3,
TNKS1BP1, GARS,
CNOTI10, IARS,
EPRS,GSPT2

CNOT1, CNOTS3,
CCDC88C,
FAM129A, CNOT10,
IARS, LARP4B, EPRS,
CDKN2AIP, HCFC1

VCP, WRN, RAD50,
XRCCS5, RPA1
OAS2, EPRS, CD44,
JAK1

RACGAP1, RFTN1,
KLC1, SEC31A,
SPTBN2

EDC4, NCBP1, FUS,
KHSRP, RPN1, SRPR,
IGF2BP3, SRSF4,
RPL26, EIF4G1,
HSPA1A

KHDRBS1, YTHDF2,
NCBP1, FBXW11,
PRKDC, DDX1, FLNA,
EIF3CL, IGF2BP3,
EIF4AG1, HSPA1A
KHDRBS1, SFPQ,
CPSF6, NCBP1, FUS,
KHSRP, SRSF4, SF1,
EIF4G1

NCBP1, MX2,
KHSRP, IGF2BP3,
SRSF4

XRCC6, PRKDC

RPL10, EIF4A3, SRSF1, PPP2R2A,
U2AF1, CASC3, ELAVL1, PCBP1,
HNRNPA1, HNRNPA3, RPS5,
YWHAZ, HNRNPL, CNOT2,
HNRNPA2B1, SRSF2, RNPS1,
EIF3F, HNRNPC, PABPC1, RBMX,
SRSF7, EIF3A, EIF3B, TNRC6B
RPS5, EIF4A3, SRSF1, PA2G4,
CASC3, ELAVL], PUM2, PURA,
THRAP3, CAPRIN1, CNOT2,
DSG1, EIF3F, HNRNPC, PABPC1,
TARDBP, EIF3A, EIF3B, TNRC6B
HNRNPA3, MBNL1, NONO,
EIF4A3, SRSF1, U2AF1, CASC3,
HNRNPL, DDX39B, THRAP3,
PCBP1,CNOT2, TRA2B, TRA2A,
HNRNPA2B1, SRSF2, RNPS1,
HNRNPC, PABPC1, TARDBP,
HNRNPA1, RBMX, SRSF7, SRSF10
DDX39B, RPSAP58, HNRNPA2B1,
EIF4A3, SRSF1, SRSF2, RNPS1,
U2AF1, CASC3, HNRNPA1,
SRSF7, SRSF10

Table 1.1 Summary of sorted binding partners.

antigen processing and presentation, which is in agreement with our previous findings

suggesting that MDIG contributes to the function of the T helper 17 (Th17) cells. Most recently,

we discovered that MDIG interacts with the DNA double strand break repair proteins in the

non-homologous end-joining (NHEJ) pathway in human bronchial epithelial cells and lung

cancer cells. In MM cells, we also identified at least 7 DNA repair proteins that interact with
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MDIG, including XRCC5, XRCC6, RAD50, etc. (Fig.1.4D and Tablel.1), indicating that MDIG
may also be involved in handling cellular stress caused by ongoing DNA damages, acommon
feature in human MM. Full lists of the determined binding partners are available in Table
S1.1 and S1.2.

MDIG binds JAK1 in MM cells. Among the most important signaling pathways, IL-
6/JAK/STAT3 signaling has been viewed as an indispensable signal for the malignant
transformation of plasma B cells and proliferation of the MM cells. Through cooperation with

C-MYC, this signaling pathway drives formation of high malignant MM in mouse model. It is
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Figure 1.5 Direct interaction between MDIG and JAK1. (A) Proteomic identification of the
unique peptide sequences of JAK1 detected by mass spectrometry in MDIG pull-downs; (B)
Co-IP assay demonstrates the physical binding between MDIG and JAK1 in total cell lysates;
(C) Confocal microscopy shows co-localization of MDIG and JAK1 in NCI-H929 and MM1S
cells. Primary antibodies: JAK1 (rabbit anti-human) and MDIG (mouse anti-human).
Secondary antibodies: Red (goat anti-rabbit) and Green (goat anti-mouse). Sites of co-
localization are indicated by arrows. (D) Immunoblotting of MDIG and JAK1 in nuclear extracts
(N) and cytosolic fractions (C) in 2 MM cell lines. The volume ratio of final nuclear extracts
over cytosolic fractions is 1:4. In this test, cytosolic proteins (30ug) and nuclear protein at
identical volume ratio were used to reflectthe distribution of target proteinsin indicated cellular
compartments. Lamin A/C and GAPDH are used as markers for nucleus and cytosol,
respectively.
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unclear how this crosstalk is established between the oncogenic signal and cytokine signal.
It is noteworthy that proteomic study identifies JAK1, a key regulator mediating cytokine-
induced signaling, as a significant interaction partner of MDIG (Fig.1.5A and Table 1.1).
Based on these observations, co-IP assay was performed using total cell lysates of both NCI-
H929 and MM1S cells and confirmed such a physical interaction (Fig.1.5B). The interaction
of MDIG and JAK1 was additionally verified by immunofluorescent staining and confocal
microscopy. Multiple co-localization sites of MDIG and JAK1 were observed in the extra-
nuclear area in both NCI-H929 cells and MM1S cells (Fig.1.5C). MDIG has long been
recognized as a nuclear protein, whereas JAK1 is believed to be a cytosolic protein in the
proximity of cytokine receptors. It is interesting to know how a nuclear protein can interact
with a cytosolic protein. To answer this question, different cellular compartments were
separated through fractionation. Surprisingly, in both MM cell lines, a significant portion of
MDIG was found in cytosol though the majority of MDIG located in nucleus (Fig.1.5D). Thus,
cytosolic localization of MDIG may be accounted for the proximity and physical interaction
between MDIG and JAK1. This is also the first observation of MDIG in cytosol of human cell
lines without additional manipulation, although we had also noted cytosolic localization of
MDIG in MDIG-overexpressed or arsenic-treated A549 cells.

MDIG demethylates and stabilizes JAK1. To investigate the biological function of
MDIG-JAK1 interaction, we further studied the role of MDIG on the gene expression and
protein stability of the JAK1 protein in MM cells. The co-amplification analysis on MM patients
exhibits no significant difference of JAK1 mRNA level between “MDIG high” and “MDIG low”
groups (Fig.1.6A). In NCI-H929 cells, genetic silencing of MDIG does not affect mRNA level
of JAK1 (Fig.1.6B), while in MM1S cells, MDIG knock-down groups displayed slightly higher
JAK1 mRNA expression than the control group (Fig.1.6C). However, on the protein level,

silencing MDIG_resulted in a considerable decrease of total JAK1 protein (Fig.1.6D). We also
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Figure 1.6 MDIG stabilizes JAK 1 through demethylation. (A) Correlation analysis of MDIG
and JAK1 mRNA expressions in MM patients. Methods and parameters used are same as
described in Figure 1.3 (**p<0.001); (B-C) qRT-PCR shows relative expression levels of
JAK1 in NCI-H929 (B) and MM1S (C) cells treated with control siRNA and 3 different siRNAs
against MDIG. The values are normalized to blank group (BLK) and displayed as mean + SD
(n =3, * p<0.05). Raw data are available in Table S1.3 and S1.4; (D) Immun oblotting analysis
of JAK1 expression in 2 MM cell lines treated with control and 3 different MDIG siRNAs; (E)
Immunoprecipitation (IP) and immunoblotting of JAK1 in 2 MM cell lines treated with control
siRNA and siRNA against MDIG. Me-lysine refers to an antibody selectively targets
methylated lysine. Bands of methylated lysine residues on JAK1 are indicated by arrows. (F-
G) Immunoblotting of cell lysates collected after cycloheximide (CHX) (10ug/mL) treatment
at indicated time in non-treated NCI-H929 cells (F) or those pretreated with control siRNA or
MDIG siRNA (G). (H) Densitometric analysis of the CHX chase results to determine the half-
life of JAK1 protein.
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performed cycloheximide (CHX) chase assay in NCI-H929 cells. Without additional treatment,
we noted the half-life (T1/2) of JAK1 is over 8h (Figs.1.6F and 1.6H), which is longer than the
3.2 h as suggested by an earlier report. The control SiRNA did not significantly affect the T1/2
of JAK1, while selective silencing of MDIG shortened T1/2 of JAK1 to 3.5 h (Fig.1.6G and
1.6H). Collectively, these data suggest that MDIG affects the JAK1 protein level through some
posttranslational mechanisms. Given the potential activity of MDIG on lysine demethylation,
we hypothesize that MDIG may regulate JAK1's stability by removing the methyl groups from
its lysine residue(s). Because there is no report of JAK1 methylation so far and the
unavailability of antibodies targeting methylated JAK1, we first immunoprecipitated and
collected JAK1 protein from the control and MDIG-silenced MM cells and then probed the
samples with an antibody that selectively recognizes methylated lysine. As shown in Figure
1.6E, a notable lysine methylation on JAK1 was detected in both NCI-H929 and MM1S cells
when MDIG was genetically silenced. In the cells transfected with a control siRNA, the JAK1
methylation couldn’t be detected.

MDIG and C-MYC are required for the hyperactivation of the IL-6 signaling.
Synergetic collaborations between C-MYC and IL-6 pathways have been well-documented
in MM. Prompted by the implications from proteomics studies above, we next interrogated
the possibility of MDIG in mediating the oncogenic crosstalk between C-MYC and IL-6
signaling. Consistent with a previous report, our biochemical analysis demonstrated that
genetic silencing of MDIG results in decreased protein levels of GP130, but not IL-6R in both
NCI-H929 and MM1S cell lines (Fig.1.7A). Moreover, MDIG silencing further leads to
attenuated phosphorylation of major downstream effectors on IL-6 signaling pathway,
including STAT3 on both Tyrosine 705 and Serine 727 sites, and AKT on Serine 473 site, but
not their total protein levels (Fig.1.7A). On the other hand, inhibition of C-MYC leads to a

significant_decrease_of total _protein levels and activity of MDIG and most regulators on IL-6
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pathway mentioned above (Fig.1.7B and 1.7C), indicating that C-MYC is an essential

transcription factor in MM cells while MDIG specifically cooperates with C-MYC in promoting
B C
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Figure 1.7 Mdig and c-myc modulates IL-6 signaling. (A) Immunoblotting analysis of
expression and activity of major regulators involved in IL-6 signaling pathway in human NCI-
H929 and MM1S cells treated with control and 3 different mdig siRNAs; (B) Immunoblotting
analysis of expression and activity of major regulators involved in IL-6 signaling pathway in
human NCI-H929 and MM1S cells treated with c-myc inhibitor, 10058-F4, for 48 h; (C)
Immunoblotting analysis of expression and activity of major regulators involved in IL-6
signaling pathway in human NCI-H929 cells treated with control and 2 different c-myc siRNAs.

overexpression of GP130 and, consequently, causes amplification of the IL-6 signaling for
cell survival and growth.

Discussion

Considerable progress in understanding the molecular pathogenesis of MM has been
achieved in the past years. However, many important questions remain to be answered, such
as the risk factors for MM and the extensive crosstalk between various oncogenic
mechanisms in MM. Bone marrow is a complex and dynamic microenvironment with stromal
cells, osteoclasts, T lymphocytes, cytokines and growth factors, which are critical for disease
evolution of MM. In such a profoundly-intertwined regulatory network of malignancy,

oncogene C-MYC and cytokine IL-6 have long been viewed as major internal driving forces

for MM. Our studies have demonstrated that MDIG is a key mediator in synergizing C-MYC
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and IL-6 signaling through direct interaction with C-MYC and JAK1. By both upregulating and
sustaining key regulators in IL-6 pathway, MDIG enables MM cells to take advantage of this
critical intracellular pathway to achieve abnormal cell proliferation and apoptosis escape.
These results explain, at least in part, the mechanisms underlying the observed synergetic
collaboration between IL-6 pathway and C-MYC in promoting oncogenesis of the plasma cells.

A study by Moline et al suggested an increased incidence rate and early onset of MM
among the first responders exposed to the WTC dust. A follow-up study by Li et al on 55,778
people, including rescue workers, recovery workers, and those who lived or worked near the
WTC, also found a higher rate of MM, in addition to thyroid and prostate cancers. The WTC
dust released from the collapse of the twin towers after 9/11 attack is a mixture of mineral
particles, fibers, metals, and chemicals, many of which are established human carcinogens.
Since MDIG was originally identified as a mineral dust-induced gene from coal workers who
exposed to mining and coal dust in a daily basis, we sought to determine whether induction
of MDIG can be indicative for the association of multiple myeloma and WTC dust. Indeed,
we found that WTC dust is highly capable of inducing MDIG expression in bronchial epithelial
cells, normal B cells and the MM cells. Although the results reported here can be viewed as
circumstantial, they may be considered as “proof of principle” to address the carcinogenic
potential of environmental factors on the development of MM.

The findings that MDIG is strongly associated with the disease progression of MM
patients suggest that MDIG can be potentially used as a prognostic marker to guide clinical
management of the MM patients. A similar role of MDIG had been reported in human gastric
carcinoma. Our analysis shows that MDIG mRNA significantly increases as disease
progresses. Notably, the increases of MDIG expressions in MM verse MGUS and MM versus
SMM are both statistically significant. In addition, high level of MDIG is also significantly

associated with poor overall_survival of the MM patients. Collectively, these data implicate the
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potential of MDIG as a predictor for disease progression and clinical outcomes. Moreover,
this study has provided arationale for targeting MDIG in future anti-MM therapies, especially
for early interventions. In the cellular models, we have demonstrated that genetic silencing of
MDIG in MM cells leads to constitutive suppression of GP130 (IL-6ST) and pro-survival
regulators, STAT3 and AKT, suggesting that MDIG inhibition could be a possible strategy to
suppress tumor growth in IL-6-dependent MM subtypes or sensitize them to IL-6-targeted
agents. Currently, there is no effective treatment specifically designed for smoldering multiple
myeloma (SMM), an asymptomatic transition status between MGUS and active MM. In fact,
uncertainties remain on the trade-off between benefits of using routine non-specific therapy
and risks of unintended toxicity. According to our findings, MDIG overexpression occurs at
early stage of disease and drives oncogenesis of MM. Thus, selective inhibiton of MDIG
could also be areasonable option for early clinical intervention or even prevention of MM.
The MDIG protein contains a conserved JmjC domain without classic chromatin- or
DNA-binding domains. In accordance with a recent report, our proteomic analysis has
unraveled direct interactions of MDIG with a number of chromatin-binding proteins and DNA
repair proteins. Given that our current findings have clearly demonstrated a regulatory circuit
among C-MYC, MDIG and IL-6 signaling, it is plausible to speculate that MDIG may be
assembled into protein complexes along with chromatin- or DNA-binding protein(s), like C-
MYC, and be recruited to MM-specific signature genes, including GP130, and exerts its
regulatory functions on gene expression. On the other hand, recent studies have discovered
that transcription-related regulators can translocate to different cellular compartments and
carry out non-canonical functions. For example, Enhancer of Zeste Homolog 2 (EZH2), a
well-documented epigenetic silencer for gene transcription, has been shown to directly
interact with and methylate STAT3. Similarly, in the present report, we have observed that

MDIG_binds_to and demethylates JAK1 in cytosol, leading to stabilization of the JAK1 protein.
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Considering that ubiquitylation is reported as the most common modification on lysine
residues of JAK1, and the report that lysine methylation may create a docking site for certain
ubiquitin ligases, it is very likely that MDIG may remove the methyl group from the lysine
residue(s) on JAK1l and subsequently prevent the action of the ubiquitin ligases on JAK1
protein. On the other hand, MDIG has also demonstrated enzymatic activity that catalyzes
histidine hydroxylation of ribosomal proteins in a wide range of organisms, from prokaryotes
to humans. Considering that lysine demethylation results from hydroxylation, the MDIG-JAK1
binding may theoretically cause other types of modifications of JAK1 than demethylation in
MM cells, for example, hydroxylation. Further studies are required to fully elucidate the
molecular basis of MDIG-induced modifications of JAK1 and the precise role of MDIG in
maintaining the levels of JAK1 protein and function.

This research has also provided hints for future MDIG and MM studies. For example,
our proteomics data show that MDIG interacts with 7 proteins related to DNA damage repair
(DDR). A recent study in lung cancer model demonstrates that physical binding between
MDIG and some of these DDR-related proteins significantly inhibits the ability of these DDR-
related proteins to repair DNA double strand break. |If this is the case in MM, MDIG may also
contribute to genome instability, which further leads to aberrantly altered karyotypes, a

common feature in MM cells.
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CHAPTER 2 UNRAVEL NOVEL MECHANISMS OF RESISTANCE TO EGFR TYROSINE
KINASE INHIBITORS IN LUNG CANCER

Introduction

Lung cancer is responsible for 1.38 million annual deaths worldwide, making it the
leading cause of cancer-related mortality in the USA and throughout the world. Lung cancer
can be histologically classified into small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC) and the latter subtype constitutes 80% of lung cancers. Among all NSCLC
patients, overexpression of the epidermal growth factor receptor (EGFR) is found in 40-80%
cases while further studies show that about 25% of all NSCLC patients harbor "activating
mutations"” in the EGFR tyrosine kinase domain, including deletions in exon 19 and L858R in
exon 21. Considering the pivotal role of EGFR in transducing signals for cell proliferation, cell-
cycle progression and activation of anti-apoptosis, targeting oncogenic EGFR signaling
pathway becomes a promising therapeutic strategy against NSCLC.

Gefitinib and erlotinib are two most widely applied first-generation targeted agents
inhibiting the activity of EGFR and downstream signaling by competitively blocking the binding
of adenosine triphosphate (ATP) to active residues on EGFR tyrosine kinase domain. Though
gefitinib has shown dramatic therapeutic effects on patients with certain clinical features, such
EGFR tyrosine kinase inhibitor (TKI) -based therapy is still suffering from two major limitations,
that is, biased drug responses (primary resistance) and inevitable acquired resistance
(secondary resistance).

First of all, predicting gefitinib responses in NSCLC patients has always been
challenging partly due to the complexity of EGFR signaling pathway itself and its frequent
crosstalk with other intracellular signaling pathways. Responses to gefitinib vary dramatically
in NSCLC patients. Clinical evidence has shown that tumors harboring previously mentioned

“activating mutations” in EGFR generally respond well to gefitinib treatment but expression
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levels of EGFR is not significantly correlated with robust drug response. Theoretically, NSCLC
patients with overexpression of wild-type EGFR are also anticipated to benefit from EGFR
TKI, but satisfying responses have only been noted in about 10% of these patients. In
agreement with the clinical observations, NSCLC cell lines also display a broad range of
sensitivity to EGFR TKIs. Such discrepancy between theoretical efficacy and actual statistics
indicates there might be some critical mechanisms modulating tumor responses to gefitinib
and in-depth researches are needed to fully elucidate them. In the past decade, accumulating
evidence has demonstrated that certain key regulators can activate alternative signaling
pathways to circumvent the suppressed EGFR after EGFR TKI treatment, such as mutant
KRAS, hyperactivated insulin-like growth factor 1 receptor (IGF-1R) and gefitinib-induced
STAT3-AKT activation loop. Inspired by these findings, many translational researches and
clinical trials testing co-targeting strategies against EGFR and “bypass” regulators have been
carried out. For example, it has been reported that AKT inhibitor and gefitinib have shown
synergistic anti-tumor effects against NSCLC cell lines. Thus, combinational targeting has
gradually become a promising and practical option to enhance the efficacy of targeted agents
in cancer treatment. However, intracellular signaling system of cancer cells is a widely
interconnected, multidirectional and dynamic network, which makes it very hard to locate the
potential “bypass” nodes. In this part, we used integrative methods to approach this problem.
We accessed large collections of cancer cell line genomics and drug toxicity profiles and
systematically screen gene expressions of 11 gefitinib-sensitive and 5 non-sensitive NSCLC
cell lines. Subsequent bioinformatics analysis has identified TGF-B, Wnt, Hedgehog and
JAK-STAT pathways as candidate “bypass” pathways. Though these four pathways have
been clearly demonstrated to facilitate cell proliferation, apoptosis escape and metastasis in
human lung cancer, their potential roles in modulating cellular responses to gefitinib are

under-studied.
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Considering the active role of STAT3 in EGFR signaling pathway, we picked JAK -
STAT pathway for further study. STAT3 belongs to the STAT (Signal transducer and activator
of transcription) protein family which is essential for cellular functions. Activation of STAT3 is
determined by phosphorylation at tyrosine 705 residue and strengthened by phosphorylation
at serine 727 residue. Classically, two categories of pathways are mediating STAT3 tyrosine
phosphorylation, one is receptor tyrosine kinase signaling, including EGFR, the other one is
cytokine-signaling pathway, including IL-6/ Janus-activated kinases (JAK). Aberrant
expression and activity of STAT3 have been observed in both carcinogenesis and
development of drug resistance in several cancer types, including NSCLC, suggesting that
STAT3 may serve as a bypass regulator to offset EGFR TKI treatment in lung cancer.

Our molecular biology experiments have demonstrated that non-sensitive lung cancer
cell lines exhibit highly refractory JAK2-STAT3 signaling axis to gefitinib treatment. Moreover,
in these cell lines, gefitinib treatment induces, rather than suppresses STAT3 activation. We
have further demonstrated that gefitinib not only promotes the direct interaction between
EGFR and STAT3, which is needed for STAT3 activation, but also affects the upstream
regulators of STAT3 in a dose-dependent manner. Low dose of gefitinib suppresses SOCS3
only while high dose inhibits both SOCS1 and SOCS3. As aresult, activated STAT3 restores
activation of AKT that is initially inhibited by gefitinib. AKT is an oncogenic protein kinase that
is associated with cell survival and proliferation. Restoration of AKT activation eventually
facilitate the lung cancer cells to survive EGFR interruption. Follow-up cell proliferation
studies show that simultaneous inhibition of STAT3 sensitizes the cancer cells to gefitinib -
induced repression of cell growth. Collectively, our data from this part have indicated that
gefitinib-induced STAT3 activation and subsequent AKT recovery may act as a novel

mechanism of primary resistance against gefitinib in NSCLC. Accordingly, combinational
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targeting of STAT3 and EGFR may enhance the efficacy of EGFR TKI-based therapy in lung
cancer patients with EGFR overexpression.

On the other hand, all patients including those who initially respond well to gefitinib will
become resistant after 6-9 months’ treatment which finally leads to treatment failure. Based
on these clinical situations, Jackman and colleagues have introduced the concept of Acquired
Resistance to EGFR TKI with the following criteria: 1, previous treatment with a single-agent
EGFR TKI; 2, a tumor that harbors an EGFR “activating” mutation or objective clinical benefit
from treatment with an EGFR TKI; 3, systemic progression of disease while on continuous
treatment with gefitinib or erlotinib within the last 30 days; 4, no intervening systemic therapy
between cessation of gefitinib or erlotinib and initiation of new therapy . Researches into this
problem have revealed many important resistance mechanisms, such as EGFR T790M
secondary mutation resulting in higher ATP binding capacity, aberrant amplification of MET
which bypasses the inhibited EGF receptors and in very rare cases, transformation from
NSCLC to small cell lung cancer (SCLC). The former two major resistance mechanisms are
reported to occur in about 50% and 30% of resistant cases, respectively. However, resistance
mechanisms remain unclear in about 20% of all resistant cases. Actually, the situation might
be far more complicated than expected given the fact that the resistance mechanisms
frequently overlap with others, for example, about 50% of resistant patients with MET
amplification also harbor EGFR T790M mutation. Moreover, second generation EGFR TKI
(afatinib) designed to overcome the EGFR T790M mutation has failed to show expected
therapeutic efficacy. Taken together, these studies suggest that some other unknown
mechanisms, such as non-oncogenic or oncogenic dependent drug resistance, existing alone
or simultaneously with currently identified alterations of the EGFR signaling, may play an
important role in the development of acquired resistance to EGFR TKI. To test this hypothesis,

we have established_a gefitinib-resistant (GR) NSCLC cell line through 180-day exposure to
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gefitinib at maximal tolerable dose (16puM). Compared to Parental cells, GR cells exhibited
decreased sensitivity to gefitinib and enhanced anchorage-independent growth and
aggressiveness, which is consistent with the clinical manifestation of resistant lung cancers.
Then we performed microarray analysis and molecular biology experiments on GR cells to
profile the resistant gene expressions and characterize the altered signaling pathways. Our
data indicate that multiple resistance mechanisms co-exist in the GR cells. One of them is
hyperactivation of STAT3 pathway, characterized by shift of phosphorylation pattern (from
tyrosine705 to serine727 residue) and enhanced transcription activity of STAT3. Based on
these results, we co-inhibited STAT3 and EGFR in GR cells and this treatment re-sensitizes
the GR cells to gefitinib by suppressing several survival-related pathways, including IL6-JAK-
STAT3, MAPK, TGF-BETA, ERBB, mTOR and VEGF pathways. Collectively, our study has
revealed novel mechanisms of acquired resistance to EGFR TKI in lung cancer, and more
importantly, has provided a strong rationale for combinational targeting of STAT3 and EGFR
as a potential strategy to overcome acquired resistance.
Material and methods

Cell culture and reagents—The human NSCLC cell lines A549, NCI-H2023 and NCI-
H2026 were purchased from the American Type Culture Collection (ATCC) (Manassas, VA)
and all the cell lines were maintained in ATCC recommended protocol. Gefitinib-naive A549
cells were cultured in full growth medium containing 16uM of gefitinib. After 180 days of
exposure, the gefitinib-resistant (GR) cell line was established. Parental A549 cells from same
original stock cultured in gefitinib-free medium alongside the GR cells during cell line
establishment were used as control cell line. STAT3 inhibitor V, Stattic, was purchased from
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

siRNA transfection—Total of 4x10° cells per well were seeded into 6-well plates and

incubated_until_they reached 50% confluence. siRNAs at a final concentration of 50nM were
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then forward-transfected using Lipofectamine RNAIMAX™  (Invitrogen)  following
manufacturer protocol. Cells were cultured for 24 hours for gene silencing followed by
sequential treatment of gefitinib. SiRNA against STAT3 and control siRNA were purchased
from Cell Signaling (Danvers, MA).

Western Blotting—Cells were lysed by 1xRIPA cell lysis buffer (Cell Signaling)
supplemented with protease and phosphatase inhibitors cocktail (Roche, Indianapolis, IN)
and 1mM PMSF. Collected cell lysates were then homogenized by sonification and insoluble
debris was removed through centrifugation of 13,000 at 4 °C for 15 minutes. The
concentrations of protein were then determined using Pierce BCA Protein Assay Kit™
(Thermo Scientific, Rockford, IL). The protein samples were prepared using 4xLDS sample
buffer (Invitrogen) with dithiothreitol at a final concentration of 200mM and were denatured
by boiling at 95°C for 5 minutes before separation by 7.5%, 10% or 12% SDS-PAGE gel,
where appropriate. Separated samples were then transferred onto PVDF membrane
(Invitrogen) and blocked with 5% non-fat milk diluted in TBST for 1 hour at room temperature.
After washing with TBST, the membranes were incubated with indicated primary antibodies
for overnight at 4°C and corresponding alkaline phosphatase (AP)-coupled second antibodies
for 1hour at room temperature before detecting. CDP-Star™ Reagent (New England Biolabs)
was used to visualize the signals on autoradiography films. Primary antibodies against
phospho-AKT (Ser473), phospho-AKT (Thr308), total AKT, phospho-STAT3 (Ser727),
phospho-STAT3 (Tyr705), total STAT3, phospho-EGFR (Tyrl068), phospho-EGFR (Thr669),
total EGFR, phospho-PI3K (Tyr458), PI3K, PTEN, phospho-P38 (Thrl80/tyr182), P38,
phospho-ERK(1/2) (Thr202/tyr204), ERK, phospho-JNK (Thr183/Tyr185), JNK, phosphor-
GAPDH, beta-actin and AP-linked mouse IgG were purchased from Cell Signaling (Danvers,
MA). Antibodies against SOCS1 and SOCS3 purchased from Millipore (Temecula, CA) and

Abcam_(Cambridge, MA), respectively.
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Immunofluorescent staining—5x10* A549 cells per well were plated into 24-well plates.
Cells were allowed to grow and attach for 24hours before time-dependent treatment to 4uM
gefitinib for up to 6 hours and fixation with 4% formaldehyde for 15 min at room temperature.
After brief washing with PBS, cells were blocked in 1xPBS containing 5% normal goat serum
and 0.3% Triton X-100 for 1 hour and EGFR antibody for another hour. Then cells were
incubated in Alexa Fluor 488 or FITC-linked goat anti-rabbit IgG (Invitrogen) for 1 hour in dark.
One drop of Prolong Gold™ antifade reagent with DAPI (Invitrogen) was added to each well
before photography.

Immunoprecipitation—Cells were lysed in non-denaturing lysis buffer containing
137mM NaCl, 20mM Tris-HCI (pH8.0), 10% glycerol, 2mM EDTA and 1% NP-40
supplemented with protease and phosphatase inhibitors cocktail (Roche). After gentle
agitation for 30 minutes and purification by centrifugation of 13,0009, the lysates were pre-
cleared with rabbit IgG (Santa Cruz) and protein A/G plus beads (Santa Cruz). 800ug of
protein for each sample was incubated with indicated antibodies at a dilution ratio of 1:100 at
4°C for overnight. The protein samples were further incubated with 40uL of protein A/G plus
beads (Santa Cruz) for 4 hours at 4°C, followed by 3 washes with non-denaturing lysis buffer.
The prepared samples were then detected with Western Blot as described above.

Cell proliferation assay—5x10° A549 cells diluted in 100uL full growth medium were
seeded into 96-well plate. After 24 hours, 100uL medium containing indicated concentration
of gefitinib with or without STAT3 inhibitor was added to each well and each dose was tested
in triplicates. CyQUANT NF Cell Proliferation Assay Kit™ (Invitrogen) was used to stain viable
cells. After 30 minutes in dark, the intensity of fluorescence was measured using BioTek
Synergy 2 plate reader (BioTek, Winooski, VT).

Soft-agar colony formation assay— 2x10* cells mixed in 0.33% agar were seeded on

top_of a_solidified layer _of 0.5% agar in 6-well plates. The cells were fed with full growth
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medium every 3 days. After 14 days, all the samples were photographed using Nikon Ti
Microscope and the photos were processed using NIS-Elements BR3.2 software. Colonies
with a diameter larger than 200um and area over 30000 um? were considered as qualified
colonies. We counted 4 cm? area per well and the results were presented as colony number
per cm?2.

Migration and invasion assay— Migration and invasion activity of parental cells and
GR cells were measured using BD BioCoat™ Matrigel™ Invasion and Migration Chambers
following the manufacturer's protocol. All cells were incubated 24 hours for migration test and
48 hours for invasion test before being fixed and stained using Diff-Quik Kit. Cells remaining
in the chamber were removed by cotton swabs. The migrated and invasive cells were then
photographed and counted using Nikon Ti Microscope and NIS-Elements BR3.2 software.

Microarray and data analysis—Total RNAs of Parental cells, GR cells, GR cells treated
with Stattic (GS) were extracted using TRIzol Reagent following manufacture’s protocol (Life
Technologies, Grand Island, NY, USA) and their integrity was assessed by 18S and 28S
ribosomal RNAs. The qualified RNA samples were sent to Phalanx Biotech (San Diego, CA)
for further process. RNA quantity and purity were verified, followed by target preparation and
hybridization to Human OneArray Plus gene expression microarray (Phalanx Biotech).
Standard selection criteria to identify differentially expressed genes (DEGS) are as follows:
(1) Log2 value for fold change =1 and P < 0.05, (2) Log2 ratios= NA and the differences of
intensity between the two samples >=1000. Gene clustering analysis was performed on
selected DEGs after data transformation and mean centering by averagely linkage algorithm.

Gene set enrichment analysis (GSEA) was used to further characterize the differences
of the enriched gene sets between Parental cells vs. GR cells, GR cells vs. GS cells. GSEA
is a method to identify whether certain gene sets (a collection of mutually related genes)

instead_of single_genes are_enriched in an independent rank-ordered profile of genes that are
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differentially expressed. In the current analysis, software GSEA2-2.2.2 (Broad Institute) was
used and signal-to-noise was selected as genes ranking metric and 1000 was used for
number of permutations.

Statistical analysis—Results of quantification of immunoblotting data, colony formation
assay, migration and invasion assays were analyzed by Student's t-test and shown as
meantSD. Cell proliferation data was processed using two-way ANOVA and the statistical
significance of differences in inhibitory effects between different treatments and samples were
determined by Post-hoc tests. For all experiments, p < 0.05 is considered as statistically
significant.

Results

TGF-B, Wnt, Hedgehog and JAK-STAT pathways are potential “bypass”
candidates mediating primary resistance to gefitinib.16 primary human NSCLC cell lines
with EGFR alterations were selected and subject to bioinformatics analysis for primary drug
resistance-related pathways. The cell lines were grouped based on their gefitinib sensitivity
and major mutation status. Cell lines with ICso under 2uM were defined as sensitive (S group)
and those with ICso over 8uM as non-sens itive (N group). Since EGFR activating mutations
have been shown to cause potent addiction to

EGFR signaling pathways, we further sort the

NCIH1703_LUNG -

. hecmrotune —— | cell lines from S group into “S group with wild-
_ sy — .
U NGiiszss kg H || type EGFR™ (SW group) and “S group with
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NCIH1648_LUNG
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HCCorLUNG | considering the established role of mutant
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mutant EGFR” (SM group). Similarly,

Kras in counteracting gefitinib, the N group

Figu_re 2.1 Hier_archical clustering of 16 NSCLC cell lines were also subdivided into “N group
cell lines used in the study based on their gene

expression profiles. with mutant Kras” (NM group) and “N group
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with wild-type Kras” (NW group). All the groups of NSCLC cell lines are listed in Table 2.1.
Then, gene expression data of the designated cell lines were clustered and the differentially
expressed genes (DEGs) were identified via Characteristic Direction method. As shown in
Figure 2.1, the cell lines sorted into the same groups exhibit similar gene expression profiles.
Next, two tests, SW group versus NW group and SW group versus NM group, were performed
separately. The identified DEGs were then subject to signaling pathway impact analysis using

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then the highlighted

CellLines Histology IC50(uM) EGFR EGFR EGFR Kras Group
CNV Expression Mutation Mutation

A549 AD 9.6 0.1163 0.61529 WT p.G12S NM
HCC-44 AD 7.9 0.3605 0.87639 WT p.G12C NM
ABC-1 AD 8 0.7321 1.0867 WT WT NW
EBC-1 SQ 10 0.4354 0.72721 WT wWT NW
NCI-H1703 AD 8 0.8629 0.60114 WT WT NW
HCC-2279 AD 0.03 1.4577 1.4334 exon 19 del WT SM
HCC4006 AD 0.02 1.3014 1.1394 exon 19 del WT SM
HCC827 AD 0.04 3.2468 3.081 exon 19 del WT SM
NCI-H1650 AD 1 1.1195 1.2502 exon 19 del WT SM
PC-14 AD 0.0309 1.1248 1.1358 exon 19 del WT SM
NCI-H3255 AD 0.015 2.5269 2.6756 L858R WT SM
HCC-95 SQ 1.9 0.322 0.65042 WT WT SW
NCI-H1648 AD 0.38 0.3608 0.93588 WT WT SW
NCI-H2126 LCC 1 0.3287 0.51548 WT WT SW
NCI-H322 AD 0.3 -0.0224 1.1254 WT WT SW
Calu-3 AD 0.3 0.874 0.19162 WT WT SW

Table 2.1 Characteristics of the NSCLC cell lines used in the studyincluding copy number variation and expression
level of EGFR, mutation status of EGFR and Kras, gefitinib IC50 and mutation-based classification of gefitinib
sensitivity. The CNV and expression level of EGFR are displayed in log2 scale. AD: adenocarcinoma, SQ:
squamous-cell carcinoma, LCC: large-cell carcinoma, NM: non-sensitive cells with Kras mutation, NW: non-
sensitive cells with wild-type Kras, SM: sensitive cells with EGFR activating mutations, SW: sensitive cells with
wild-type EGFR
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NM vs. SW signaling pathways were manually filtered
Rank Order Candidate Pathways
1 HSA04350 TGF BETA SIGNALING PATHWAY based on their biological function. The
2 HSA04630 JAK STAT SIGNALING PATHWAY
3 H5A04310 WNT SIGNALING PATHWAY signaling pathways not related to cell
4 HSA04340 HEDGEHOG SIGNALING PATHWAY
NW ve. SW proliferation or apoptosis escape were filtered
Rank Order Candidate Pathways . .
1 HSA04350 TGF BETA SIGNALING PATHWAY out and the pathways Sharmg massive

2 HSA04340 HEDGEHOG SIGNALING PATHWAY . .
3 HSA0G4310 WNT SIGNALING PATHWAY overlapping DEGs with each other were
4

HSA04630 JAK STAT SIGNALING PATHWAY . . . .
combined into the one with highest

Table2.2. Summary of implicated “bypass” pathways

involved in mediating gefitinib sensitivity. NM: non-  significance. In NW group cell lines, TGF-3,
sensitive with Kras mutation, NW: non-sensitive with

wild-type Kras, SW: sensitive with wild-type EGFR Wnt, Hedgehog and JAK-STAT pathways were
implicated. Notably, in NM group, the same four pathways were highly implicated with only a
minor difference in the rank order, that is, TGF-B, JAK-STAT, Wnt and Hedgehog (Table 2.2),
suggesting non-sensitive cell lines, with mutant Kras or not, may share similar alternative
downstream pathways to counteract gefitinib treatment. Taken together, these results
strongly indicate that TGF-B, Wnt, Hedgehog and JAK-STAT pathways may play a significant
role in modulating cellular responses to gefitinib among NSCLC cells.

Sensitive and non-sensitive NSCLC cell lines exhibit distinct response patterns
of key protein regulators to gefitinib treatment. Activation of EGFR is closely linked to
prosurvival signaling pathways, including AKT and STAT3. Considering STAT3 pertaining to
putative “bypass” pathways, we performed time course study to investigate the differences in
responses to gefitinib between sensitive and non-sensitive cell lines. 3 NSCLC cell lines were
used, including 2 non-sensitive cell lines, A549 and NCI-H2023, and 1 sensitive cell line, NCI-
H2126 (Fig.2.2A). As shown in Figure 2.2B and 2.2C, gefitinib is capable of inhibiting the
activity of EGFR in all 3 cell lines. Interestingly, in the 2 non-sensitive cell lines the initially

inhibited AKT activation was gradually recovered at later time points on both serine473 and

threonine308_residues while the AKT activation was substantially inhibited in NCI-H2126 cells.
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Figure 2.2 Sensitive and non-sensitive NSCLC cell lines show distinct responses to gefitinib
treatment. (A) Cell Viability Assay for the percentage of viable cells in A549, NCI-H2023 cells
(non-sensitive NSCLC cell lines) and NCI-H2026 cells (sensitive cell line) after 48-hour
exposure to gefitinib ranging from 1uM to 16uM. (B) Western blot analysis shows different
effects of gefitinib on multiple protein regulatorsinvolved in EGFR signaling pathway between
A549, NCI-H2023 and NCI-H2126 cells. (C) The expression level and activity of EGFR, AKT
and STAT3 in A549 cells treated with gefitinib at 4uM (left panel) and 8uM (right panel) for

indicated time periods.

Additionally, the Jak2-STAT3 signaling axis in A549 and NCI-H2023 cells have been

demonstrated to be more refractory in response to gefitinib exposure than NCI-H2126 cells,

which is in agreement with bioinformatics analysis. Inhibition of EGFR by gefitinib is expected

to down-regulate STAT3 activity considering that STAT family proteins, STAT3 in particular,

play an essential role in EGFR-mediated cellular functions. However, in both non-sensitive
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cell lines, A549 and NCI-H2023, time course test showed that gefitinib treatment, in fact,
induces STAT3 activation. When exposed to gefitinibb at 4uM, a rapid increase of
phosphorylation of STAT3 on tyrosine 705 residues was observed. Such gefitinib-induced
cellular responses were confirmed by more detailed follow-up experiments on A549 cells
which involved more time points and doses (4uM and 8uM) of gefitinib treatment (Fig.2.2C).
Interestingly, we noticed that the trend of gefitinib-induced STAT3 activation was accordant
with the recovery pattern of AKT after gefitinib treatment, indicating potential interactions
between these two pathways. While in sensitive cell line, NCI-H2126 cells, the activity of
STAT3 is time-dependently suppressed on both tyrosine705 and serine727 residues, which
is a significant difference between non-sensitive and sensitive cell lines (Fig.2.2B).

AKT recoveryis not due to re-activation of the EGFR by gefitinib. EGFR has been
viewed as one of the key upstream kinases responsible for growth factor-induced AKT
activation. To determine whether the observed recovery of AKT activation is due to failed
inhibition of EGFR by gefitinib, we measured the levels of internalization and phosphorylation
of EGFR in response to gefitinib. In immunofluorescent staining assay, gefitinib treatment
induced a fast and sustained internalization of the EGFR (Fig.2.3A). After treatment of the
cells with 4 uyM gefitinib, a gradual translocation of the EGFR from cell membrane to
intracellular vesicles and finally to the perinuclear area was observed, indicating a constitutive
and effective inhibition of the EGFR by gefitinib. To further validate the inhibitory effect of
gefitinib on EGFR, we next measured the phosphorylation status of the EGFR in the cells
treated with gefitinib. Again, the time course studies demonstrated a rapid recovery of AKT
phosphorylation in both serine 473 (S473) and threonine 308 (T308) residues within 6 h
following the initial inhibition, especially in the cells treated with 4uM gefitinib (Fig.2.3B). Semi-

guantification of the AKT phosphorylation suggested about 40-60% recovery of AKT
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Figure 2.3 Gefitinib inhibits EGFR constitutively and substantially. (A) Immunofluorescence test
shows the process of internalization of EGFR at proceeding time points after treatment of
gefitinib in A549 cells. (B) Gefitinib treatment induced continuous inhibition of EGFR
phosphorylation on tyrosine 1068 (Y1068) and threonine 669 (T669) without recovery at the
later time points. (C) Semi-quantification of AKT recovery following gefitinib treatment.

activation at the 4 to 6 h time points of gefitinib treatment (Fig.2.3C). However, there is no
similar recovery pattern of EGFR phosphorylation following gefitinib treatment. At both 4 and
8 UM gefitinib treatments, phosphorylation of Y1068 and T669 of EGFR was substantially
inhibited from the earlier to later time points (Fig. 2.3B). These data, thus, suggest that the

AKT recovery is not due to failed inhibition of EGFR by gefitinib.
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Inhibition of STAT3 prevented recovery of AKT activation in gefitinib-treated
cells. It has been well-documented that STAT3 signaling pathway contributes to AKT
activation in response to a number of extracellular and intracellular signals. More recently,
STAT3-AKT activation loop has been uncovered in lung epithelial cells. Based on that
rationale, we hypothesized that gefitinib-induced STAT3 activation is responsible for the

sequential recovery of AKT phosphorylation. To test that, we co-treated cells with Stattic, a
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Figure 2.4 Chemical inhibitor and gene silencing of STAT3 suppresses succeeding recovery
of AKT activation after gefitinib treatment. (A) Immunoblotting analysis of expressions and
activities of EGFR, AKT, STAT3 and ERK under time-dependent treatment with 4uM gefitinib
combined with or without 100 uM Stattic (STAT3 inhibitor) for up to 6 hours in A549 cells. (B)
Silencing STAT3 by siRNA diminishes gefitinib-induced AKT recovery in A549 cells. (C) Semi-
guantification of the AKT S473 phosphorylation in the cells treated with gefitinib and
transfected with control siRNA (siCtrl, left panel) or STAT3 siRNA (siSTATS3, right panel).
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STAT3 inhibitor, which potently downregulates its phosphorylation without affecting the total
amount of STAT3. As shown in the Figure 2.4A, when STAT3 function was inhibited, the
recovery pattern of AKT was also eliminated even when EGFR was hyperactivated possibly
by the treatment of STAT3 inhibitor, Stattic. In order to exclude the potential off-target effects
of the chemical inhibitor, we further employed a siRNA-based gene silencing strategy to
confirm the above observation. When the cells were transfected with STAT3 specific SIRNA,
SISTATS, the total amount and activity of STAT3 were both reduced and the recovery pattern
of AKT was eliminated, though the basal level of AKT phosphorylation was elevated. In
contrast, the cells transfected with control siRNA or without transfection showed no inhibitory
effects on either STAT3 activation or the AKT recovery (Fig.2.4B and 2.4C).

Gefitinib promotes physical binding of STAT3 to EGFR. In receptor tyrosine
kinase-dependent signaling, STAT3 activation is increased by binding to certain STAT3
docking sites on EGFR c-terminal domains. In order to determine the direct physical
interaction between STAT3 and EGFR, immuno-precipitation assay was performed. As
shown in Figure 2.5A, gefitinib treatment induced potent binding between STAT3 and EGFR

when identical amount of total protein was used for pull-down by anti-STAT3 antibody.
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Figure 2.5 Gefitinib promotes EGFR-STAT3 interaction. (A) Immunoprecipitation assay (left
pannel) demonstrates direct physical binding of EGFR and STAT3 induced by gefitinib
treatment. Cells were treated with 8uM gefitinib for 6 hours. The samples were precipitated with
STATS3 antibody and detected using antibodies against EGFR and STAT3. (B) Immunoblotting
analysis shows the effect of gefitinib on SOCS1 and SOCS3 in A549 cells.
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Another fundamental signaling pathway leading to STAT3 activation is cytokine pathway in
which STAT3 is activated by JAK family proteins, which is negatively regulated by the
suppressor of cytokine signaling proteins (SOCS), such as SOCS1 and SOCS3. In order to
identify the potential role of the regulators in cytokine-activated pathway, we carried out
another time course study to determine the levels of the SOCS proteins. Level of SOCS3 is
reduced in cells treated with 4uM and 8uM gefitinib, while significant reduction of SOCSL1 is
observed in 8uM group only (Fig.2.5B), suggesting that gefitinib is able to inhibit SOCS
proteins in a manner of dose-dependency, which accounted for an alternative mechanism
contributing to gefitinib-induced STAT3 activation.

STAT3 inhibition sensitizes non-sensitive NSCLC cells to gefitinib treatment in
vitro. Since gefitinib has been shown to induce STAT3 activation and subsequent AKT
recovery (Fig.2.2), we were interested in if combinational suppression of EGFR and STATS3
could overcome the intrinsic insensitivity of certain NSCLC cells. A549 cells were exposed to
dose-dependent treatment of gefitinib (2-8uM) in combination with STAT3 inhibitor (5uM) for

24 h and 48 h, respectively, before cell viability was examined and analyzed. As shown in
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Figure 2.6 STATS3 inhibitor enhances the inhibitory effect of gefitinib on cell growth. Cell
Viability Assay Kit was used to stain viable cells. Data show the relative percentage of viable
A549 cells after exposed to gefitinib ranging from 2uM to 8uM in the absence or presence of
Stattic for 24 hours (A) and 48 hours (B), respectively. (P<0.01 in both tests)
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Figure 2.6, combinational STAT3 inhibition significantly fortifies the anti-cell growth effects of
gefitinib in A549 cells compared to the group of gefitinib alone.
NSCLC cells with acquired gefitinib resistance (GR) exhibit aggressive

phenotype. In order to study the mechanisms of acquired resistance, we have established a
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Figure 2.7 Gefitinib resistant cells exhibit enhanced drug resistance and aggressiveness.
(A) Cell Viability Assay for the percentage of viable cells in gefitinib resistant (GR) and
parental cells when exposed to gefitinib ranging from 2uM to 8uM. (B) Soft agar assay
for GR cells and parental cells. Colonies with a diameter larger than 200pum and an area
over 30000 um2 were considered as qualified, as indicated by the white arrows. (C) Cell
migration and invasion tests for GR cells and parental cells, summary of results and
typical photos are presented. (P<0.05 in all tests)
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gefitinib-resistant (GR) cell line derived from A549 cell line (human NSCLC cell line) via long-
term drug exposure. GR cells have been demonstrated to be significantly more resistant to
gefitinib treatment than Parental cells through dose-dependent treatment to gefitinib for 24h
and 48h (Fig.2.7A). It has been reported that about 80% patients with acquired resistance
against EGFR TKiIs suffer from rapid disease progression and over half of the cases are
severe manifestations including intrapulmonary metastasis, intraperitoneal progression and
intracranial progression. Through colony formation assay and migration and invasion tests
(Fig.2.7B and 2.7C), we have demonstrated that resistant cells exhibit enhanced capability of
anchorage-independent growth, migration and invasion, which recapitulated previous clinical
observations.

STAT3 hyperactivation and other mechanisms are implicated in GR cells. In
order to fully characterize the genes and potential signaling pathways which give rise to

acquired resistance, we performed microarray

319 analysis on Parental cells, GR cells and GR cells
213

1.06 . . . .

P1 P2 P3 GR1 GR2 GR3 GS1 GS2 GS3 oo treated with STAT3 inhibitor. Then we filtered
-1.06
-213
-3.19

R E— | I —

out the DEGs in the whole expression data
based on the following selection criteria: (1)
Log2 value for fold change =21 and P < 0.05. (2)
Log2 ratios= NA and the differences of intensity
between the two samples >=1000. 243 identified
DEGs were clustered and presented in the
heatmap (Fig.2.8A).

We next performed Gene Set Enrichment

P: Parental A549 cells Analysis (GSEA) on GR cells versus parental
GR: Gefitinib-resistant cells

GS: GR cells + Sttatic (100 uM) cells to investigate the signaling pathways that
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Figure 2.8 GR cells exhibited unique gene expression profiles and hyperactivated STAT3
signaling. (A) Top 243 differentially expressed genes (DEGs) was selected for clustering analysis.
Up- and down-regulated genes are represented in red and green colors, respectively. An intensity
filter was used to select genes where the difference between the maximum and minimum intensity
values exceeds 35,000 among all microarrays. (P: parental cells, GR: GR cédls, GS: GR cells
treated with Sttatic) (B) GSEA was performed on GR cells vs. parental cells. Plots show the

enrichment of transcripts involved

in ERBB, PI3K-AKT and JAK-STAT3 signaling pathways.

Normalized enrichment score (NES) and p-value are shown in the figure. (C) Immunoblotting
analysis showing the differences in major signaling regulators between GR cells and parental cells.
(D) Enrichment plots show significantly altered gene sets associated with fundamental cellular
functions in GR cells. (E) Expression levels of major malignancy-related DEGs in GR cells and (F)
their locations on KEGG cancer pathway map, upregulated and downregulated genes are
indicated in red and green, respectively.

are altered in the GR cells. As shown in Figure 2.8B, the transcripts involved in ERBB (EGFR

is also known as ERBB1) signaling pathway are significantly downregulated in GR cells after

long-term exposure to gefitinib. Interestingly, further analysis on 2 pathways closely related

to EGFR signaling pathway exhibit opposite enrichment trends. PIBK-AKT-MTOR pathway
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shows a sharp descending curve while majority of genes in IL6-JAK-STAT3 pathway are
positively enriched in GR cells. Considering that AKT and STAT3 are both important
downstream regulators in EGFR signaling pathway and they frequently interact with each
other, such discrepancy may offset the statistical power of GESA on both gene sets (p-values
are both larger than 0.05). However, analysis of the leading-edge transcripts from both
pathways strongly suggest that STAT3 pathway is hyperactivated while AKT and the whole
EGFR pathways are both suppressed in GR cells. Subsequent molecular biology
experiments have reinforced the concepts of the bioinformatics analysis (Fig.2.8C). It is
noteworthy that the phosphorylation level of STAT3 is significantly enhanced on serine727
(S727) but suppressed on tyrosine705 (Y705) residue in GR cells. This shift of activation site
may be explained by the observation that S727 phosphorylation can negatively regulate
tyrosine phosphorylation of STAT3. Since previous studies have also demonstrated that S727
phosphorylation is required for maximizing the transcriptional activity of STAT3, the
constitutive serine activation in GR cells may reflect a constant upregulation of STAT3 target
genes, including C-MYC, which in turn facilitate cell survival and counteract gefitinib-induced
responses. In agreement with this notion, we also observed increased level of C-MYC protein,
a well-established gene target of STAT3, in GR cells (Fig.2.8C). GSEA also identified that
DNA repair, P53 pathway and Oxidative Phosphorylation (OXPHOS) are significantly
downregulated in GR cells which may account for other important mechanisms leading to
acquired drug resistance (Fig.2.8D).

We next determined the DEGs in GR cells compared to Parental cells and applied
signaling pathway impact analysis using KEGG database. The following 8 pathways were
highlighted: (1) Complement and coagulation cascades, (2) Focal adhesion, (3) ECM-
receptor interaction, (4) Cell adhesion molecules (CAMs), (5) Small cell lung cancer, (6)

Leukocyte transendothelial _migration, (7) Nitrogen metabolism and (8) Pathways in cancer.
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The “Pathways in cancer” is shown as representative. Expression levels of the transcripts

involved are listed (Fig.2.8E) as well as their locations and functions in the pathway (Fig.2.8F).
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Figure 2.9 STAT3 inhibition overcomes gefitinib resistance by simultaneously suppressing
multiple sunival-related pathways. (A) Cell viability assay shows the percentage of viable cells of
GR and parental cell lines after 48-hour exposure to gefitinib ranging from 2uM to 8uM in the
absence or presence of 5uM Stattic. P-value table is shown in the figure. (B) Immunoblotting
shows the impact of Stattic and gefitinib co-treatment on STAT3 signaling pathway in GR cells.
(C) GSEA was performed on GR cells vs. GS cells. Plots show the enrichment of transcripts
inwlved in JAK-STAT3, MAPK, TGF BETA and typical NSCLC signaling pathways. (D)
Expression levels of major malignancy-related DEGs after Stattic treatment. (E) Visualization of
the identified DEGs on KEGG cancer pathway map, upregulated and downregulated genes are

highlighted in red and green, respectively.
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STAT3 inhibition overcomes acquired resistance to gefitinib by downregulating
major survival-related pathways. Since STAT3 hyperactivation has been implicated as an
important resistance mechanism, we propose STAT3 co-inhibition as a rational method to
overcome the acquired drug resistance in the current model. To test that hypothesis, we
performed 48-hour cell viability test on Parental cells and GR cells exposed to dose-
dependent treatment of gefitinib (2-8uM). Another group of GR cells were treated in
combination with STAT3 inhibitor, Stattic (5uM). As shown in Figure 2.9A, combinational
STAT3 inhibition significantly assisted the anti-cell growth effects of gefitinib in GR cells,
especially at high gefitinib doses like 4uM and 8uM.

Then we moved on to investigate the underlying mechanisms. Our biomedical studies
demonstrated that 100pM Stattic treatment is capable of instantly and effectively inhibiting
serine phosphorylation of STAT3 and its transcription activity on its target gene, C-MYC, in
GR cells (Fig.2.9B). Microarray analysis was performed on STAT3-inhibited GR (GS) cells in
parallel with Parental cells and GR cells (Fig.2.8A). Then we conducted GSEA on GS over
GR cells to characterize the enrichment of intracellular signaling pathways. As shown in the
plots (Fig.2.9C), GSEA demonstrated that major gene sets associated with IL6-JAK-STAT3,
MAPK and TGF-BETA pathways were all downregulated following Stattic treatment, which
led to significant suppression of genes found in “Non-Small Cell Lung Cancer” pathway. We
also carried out pathway impact analysis on the DEGs identified between GS and GR cells.
In addition to the 4 pathways determined by GSEA, ErbB signaling pathway, mTOR signaling
pathway and VEGF signaling pathway were also found to be affected by STAT3 inhibitor.
Again, expressions of major DEGs were summarized (Fig.2.9D) and mapped to the KEGG's

“Pathway in cancers” (Fig.2.9E).
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Discussion

Drug resistance, both primary and secondary, remains a major obstacle to successful
cure of NSCLC via EGFR TKI-based therapies. Biased drug responses caused by primary
resistance make it extremely hard to predict efficacy in patients and largely limit the patient
population who can benefit from EGFR TKI. Even those patients initially sensitive to EGFR
targeting therapy will develop secondary resistance (acquired resistance) and the subsequent
relapse and progression of disease finally leads to treatment failure. The observations that
several resistance mechanisms frequently overlap with each other lift this problem to a higher
level of complexity which urgently requires co-inhibition of multiple targets to replace the
current “one gene, one drug ” strategy. Despite some progresses, efforts aiming to selectively
co-target some major resistance mechanisms show limited efficacy both in vitro and in vivo,
strongly indicating the possibility of some unknown mechanisms which also contribute to
resistance against EGFR TKI. In order to successfully carry out the combinational targeting
strategy, revealing the hiding resistance mechanisms is undoubtedly the prerequisite, thus,
explorations into such mechanisms are of great scientific and clinical significance.

It has long been believed that EGFR TKI, such as gefitinib, function through selectively
binding the tyrosine kinase domain on EGFR and suppressing its major downstream pro-
survival and anti-apoptosis signaling pathways, including STAT3, AKT and ERK. Our study,
however, identifies a unique gefitinib-induced STAT3 activation pattern in non-sensitive
NSCLC cell lines, A549 and NCI-H2023, which differs greatly from the classic tyrosine kinase-
dependent pathway of STAT3 activation. In addition, based on previously defined STAT3-
AKT axis in lung epithelial cells, we have further demonstrated that phosphorylation level of
AKT substantially recovers rapidly from initial inhibition within 6 hours after gefitinib treatment
and this process is dependent on the synchronous gefitinib-induced STAT3 activation.

Considering__the _pivotal _role of STAT3 and AKT in anti-apoptotic machinery, our study
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answers, at least partly, why certain types of lung cancer cells do not respond well to gefitinib -
induced cell death even if EGFR is overexpressed in these cells. Moreover, this notion has
been further substantiated by the cell proliferation assay using combinational inhibition of
EGFR and STAT3. Co-targeting of STAT3 can significantly enhance the anti-tumor efficacy
of gefitinib, indicating a promising synergistic strategy to enhance efficacy of gefitinib in
NSCLC.

Activation of STAT3 can be achieved from receptor tyrosine kinase (RTK) pathway,
including EGFR-centered signaling, or cytokine signaling pathway (also known as RTK-
independent pathway), like Interleukin-6/JAK/STAT3 pathway. In an effort to explore the
mechanisms underlying gefitinib-induced STAT3 activation, we demonstrate that gefitinib not
only promotes the direct binding of EGFR and STAT3 but also, surprisingly, affects the
receptor tyrosine kinase-independent pathway of STAT3 activation. Multiple tyrosine residues
on the C-tails of EGFR, including Y1068, Y1086 and Y1045, have been identified as docking
sites where STAT3 uses its SH2 and DNA-binding domains to interact with EGFR and gets
activated as a consequence in 293 cells. In agreement with these researches, our study
shows that gefitinib treatment is able to directly promote the physical interaction between
EGFR and STAT3 and thus regulate its activity in A549 cells. More interestingly, we have
also revealed that gefitinib down regulates another important upstream regulator of STATS3,
the SOCS family proteins. As shown in Figure 2.5A, gefitinib at 4uM is able to reduce the
level of SOCS3, while higher concentration (8uM) is required to more effectively suppress
both SOCS1 and SOCSS, suggesting that gefitinib also induces STAT3 activation by altering
cytokine signaling. Considering SOCS proteins are also recruited by certain regulatory region
of EGFR, extending from Y1114 to E1172, to block STAT3 activation, reduced SOCS proteins
by gefitinib may also abrogate the intrinsic inhibitory effects of EGFR on STAT3. In NSCLC

cells, differences _in_mutation status of EGFR, like “activating mutations” and “resistant
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mutations”, and extent of addiction to EGFR signaling are fundamental factors determining
sensitivity to gefitinib. Established evidence has suggested an amplified expression of the
wild-type EGFR are more frequent in prevalence yet associated with less sensitivity to
gefitinib treatment. The results of this study have revealed novel mechanisms modulating
cellular responses to gefitinib, especially in cells with overexpressed wild-type EGFR, which
will provide valuable information to optimize future anti-tumor therapy in lung cancer patients.

On the other hand, this study also sheds light on the acquired resistance of gefitinib.
Through systemically profiing the global gene expressions and molecular biology
experiments, we have demonstrated there are multiple resistance mechanisms occurring in
the GR cells simultaneously, which include both novel mechanisms and classic ones as
previously reported. In our model, EGFR itself has not become more refractory to gefitinib
treatment than the control cell line, moreover, GSEA further indicates that EGFR pathway is
significantly suppressed in GR cells after long-term exposure to gefitinib. These results
indicate that the mechanisms of acquired resistance in this model are totally different from
the most classic and common one, T790M “gate keeper” mutation of EGFR. Accordingly,
PIBK-AKT-mTOR pathway also tends to be suppressed in GR cells compared to Parental
cells (p=0.08).

Interestingly, we noticed that STAT3 is hyperactivated in our model. Similarly, in a
previous study, increased phosphorylation of STAT3 on tyrosine 705 (Y705) residue is
observed in another gefitinib-resistant lung cancer cell line also derived from A549 cells.
Enhanced STAT3 phosphorylation has also been observed in EGFR mAb treatment-resistant
cell models of head and neck squamous carcinoma (HNSCC) and bladder cancer. Our model,
however, exhibits a unique hyperactivation pattern of STAT3, phosphorylation level is
significantly increased on serine727 (S727) but inhibited on Y705 residue in GR cells.

Considering._that _S727_activation is required for maximized transcription activity of STAT3,
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this unique shift of phosphorylation sites might cause constant upregulation of STAT3 target
genes, for example, C-MYC. Similarly, many major genes associated with STAT3 pathway
also tend to be enriched in GR cells, even though EGFR and AKT pathways are both
suppressed. We also noticed that gene sets related to DNA repair function, P53 pathway and
Oxidative Phosphorylation (OXPHOS) capacity are all significantly downregulated in GR cells.
These results suggest that GR cells might be predisposed to accumulating DNA damages
and mutations, escape of apoptosis, malignant energy metabolism, which are all hallmarks
of cancer pathogenesis and development. Additionally, we have demonstrated that FGF2 and
FGFR1 are both significantly upregulated in GR cells, which repeated a previously reported
resistance mechanism, FGF2-FGFR1 autocrine bypass loop, in several other gefitinib-
resistant NSCLC cell lines.

Rational co-inhibition of STAT3 assisted gefitinib’s inhibitory effects on GR cells,
especially at relatively high concentrations of gefitinib, like 4uM and 8uM. Our data further
demonstrated that effective STAT3 inhibition suppresses several pathways closely related to
cell growth and proliferation simultaneously, including MAPK, TGF-beta, EGFR and AKT-
MTOR pathways. When interrogating the expression profiles in details, we found that STAT3
inhibition caused significant downregulation of PIK3CD, AKT1, AKT2 and AKT3. This result
not only confirms the STAT3-AKT activation loop defined in earlier steps of this study, but
also provides answers for the dramatic efficacy of targeting of STAT3 or subsequent
AKT/mTOR in overcoming acquired resistance in both in vitro and in vivo lung cancer models
receiving EGFR TKl-based therapy. In addition, Stattic treatment also caused reduced
transcription of FGF2 and MET, both of which are key regulators modulating previously-
defined alternative pathways in EGFR TKI-resistant lung cancers. Admittedly, it has been
demonstrated that the evolutionary paths leading lung cancer cells to resistance are highly

variable_and_heterogeneous, but our data suggest that combinational targeting of STAT3 and
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EGFR can be a promising strategy to conquer acquired resistance, at least in certain
refractory lung cancers. In the future, more efforts are required to fully elucidate and
document the resistance mechanisms, which will make the fundamental step for development

of successful combinational therapy with higher selectivity and efficacy against advanced

NSCLC.
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Appendix A Table S1.1 Full list of significant MDIG pull-downs in H929 cells
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Aberrant intracellular signaling pathway is one of the major driving forces of
malignancy through multiple stages of human cancers. Our study demonstrates that in cancer
cells, the signaling pathways are profoundly and actively intertwined with each other so they
can synergistically affect cell biology, including promoting development of malignancy and
compensating the loss of proliferation or survival signals in responses to anti-tumor drug.
Moreover, cancer cells can also adopt “non-canonical” mechanisms to modulate the activities
of key protein regulators so the whole signaling pathway is strengthened.

In the first project, we performed integrative studies to investigate the oncogenic role
of a WTC (World Trade Center) dust-induced regulator, MDIG, in multiple myeloma (MM).
MM is a malignancy of plasma cells located within bone-marrow compartment and several
post 9/11 health surveillance programs and epidemiological studies suggested an increased
incidence rate of multiple myeloma (MM) among the individuals who intensively exposed to
WTC dust. However, the potential connections between WTC dust and MM remain to be
elucidated. Expressions of MDIG were investigated in bronchial epithelial cells, B cells, MM
cell lines and in the bone marrow specimens from the MM patients. We found that WTC dust

is potent in inducing MDIG protein and/or mRNA in bronchial epithelial cells, B cells and MM
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cell lines. An increased MDIG expression in MM bone marrow was observed, which is
associated with the disease progression and prognosis of the MM patients. Using integrative
genomics and proteomics approaches, we further demonstrated that in MM cell lines, MDIG
directly interacts with C-MYC and JAK1, which contributes to hyperactivation of the JAK-
STAT3 signaling important for the pathogenesis of MM. Genetic silencing of MDIG reduced
activity of the major downstream effectors in the JAK-STAT3 pathway. Our results indicate
that WTC dust induced-MDIG overexpression bridges C-MYC pathway and STAT3 pathway
in MM, which is essential for the tumorigenesis of MM.

In the second project, we focused on the underlying mechanisms of both primary and
secondary resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR
TKI), including gefitinib, in Non-small cell lung cancer (NSCLC), which are two major
obstacles compromising the clinical success of targeted therapy. In the part studying primary
resistance, we observed that JAK2-STAT3 signaling axis in non-sensitive lung cancer cell
lines is highly refractory to gefitinib treatment. Follow-up experiments further revealed a
unique STAT3-dependent AKT restoration pattern in non-sensitive lung cancer cells, which
impairs the efficacy of gefitinib. Mechanistically, gefitinib increased physical binding between
EGFR and STAT3, which de-repressed STAT3 from SOCSS3, an upstream suppressor of
STAT3. Such a de-repression of STAT3 in turn fostered AKT activation. Genetic or
pharmacological inhibition of STAT3 abrogated AKT activation and combined gefitinib with
STATS3 inhibition synergistically reduced the growth of the tumor cells. In order to study the
mechanisms of secondary resistance (acquired resistance), we established a gefitinib-
resistant lung cancer (GR) cell line. Through profiing the gene expression pattern and
investigating the alterations of intracellular signaling pathways, we discovered multiple
resistance mechanisms in GR cells, including a unique hyperactivation pattern of STAT3. A

rational_co-inhibition_of STAT3 and EGFR simultaneously suppressed several survival-related
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pathways in GR cells. As a result, such combinational targeting re-sensitized the GR cells to
gefitinib treatment. Taken together, our studies have unraveled novel mechanisms of
resistance to EGFR TKI in lung cancer and have provided important information for rationale-

based combinational targeting strategies to overcome drug resistance.
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