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CHAPTER 1 EXPLORE ABBERANT MDIG AND C-MYC SIGNALING CIRCUIT IN 

MULTIPLE MYELOMA  

Introduction  

Multiple myeloma (MM) is a malignant neoplasm of plasma cells localized within the 

bone marrow (BM) compartment and ranked second in prevalence of all hematopoietic 

malignancies. In 2014, there were around 24,000 and 110,000 new cases in U.S and 

worldwide, respectively. MM can occur de novo or from premalignant monoclonal 

gammopathy of undetermined significance (MGUS), which is characterized by abnormal 

proliferation of plasma cells and increased monoclonal immunoglobulins.  In the past decade, 

large-scale genomics studies have determined genetic landscape of MM and identified 

abnormal genetic events present in various disease stages, from MGUS to smoldering 

multiple myeloma (SMM), active MM and relapsed MM.  

Multiple “omics” technologies allow us to interrogate the alterations in MM cells from 

multiple aspects, including epigenetic regulatory machinery, global protein networks and 

kinase activities.  Accumulating evidence has delineated a higher level complexity of MM 

pathogenesis that requires extensive interactions among oncogenic signaling pathways. The 

unique BM milieu is vital for the longevity of myeloma cells by providing various supportive 

BM cells and soluble factors. Among these driving forces, one of the most important factors 

is the interleukin-6 (IL-6) cytokine. After binding to its receptor (IL-6R) and recruiting a signal 

transducer, GP130 (also known as CD130 or IL-6ST), IL-6 can activate Janus Kinase 

(JAK)/signal transducer and activator of transcription (STAT), AKT and mitogen-activated 

protein kinase (MAPK) pathways to promote proliferation, survival and drug resistance of the 

MM cells.  

A hallmark of MM pathogenesis is the mutation- or overexpression-induced C-MYC 

activation.  C-MYC is a well-defined onco-protein involved in many types of human cancers. 
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As an essential transcription factor, C-MYC upregulates transcription of genes responsible 

for cell growth, proliferation and maintenance of cancer cell stemness.  In MM, C-MYC 

overexpression can distinguish active MM from premalignant MGUS. In addition, activated 

C-MYC has been shown to sustain the survival of myeloma cells.  More interestingly, a recent 

study indicates that crosstalk between the IL-6 pathway and C-MYC results in a significant 

acceleration of MM pathogenesis.  However, the underlying mechanisms of this oncogenic 

interaction remain unclear.  

As a C-MYC-induced protein, MDIG (mineral dust-induced gene, also known as 

mina53, MINA, or NO52) functions as a histidyl hydroxylase and potentially a lysine-specific 

demethylase, which regulates gene transcription through modifying the tri-methylated lysine 

9 residue on histone 3 (H3K9me3).  Consistent with this function, MDIG is found to be 

exclusively localized in the nucleus of various cell types. Some studies have demonstrated 

that MDIG exerts a strong immune-regulatory function by promoting differentiation of certain 

T helper (Th) cells, including Th1 and Th17 cells.  Overexpression of MDIG has been 

observed in many types of human cancer, including lung cancer, colon cancer, gastric 

carcinoma, etc.. Meanwhile, MDIG has been shown to be able to promote cancer cell 

proliferation.  Furthermore, MDIG overexpression has been observed in various B cell-

derived malignancies among major human lymphoma subtypes, suggesting that MDIG may 

contribute to C-MYC-induced tumorigenesis in MM.  

Some epidemiological studies have provided hints for potential risk factors and novel 

approaches to study the pathogenesis of MM. Several earlier studies suggested that 

environmental exposures to industrial or agricultural products, such as benzene, petroleum 

products, and pesticides, may contribute to the development of MM. More importantly, some 

recent cohort studies on the first responders, reconstruction workers and volunteers of the 

World Trade Center (WTC) after the terrorist attack on September 11, 2001, provided 
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evidence linking inhalation of the WTC dust to MM.  However, there are no previous studies 

revealing the potential carcinogenic effect of WTC dust or how WTC dust causes malignant 

transformation of the mature plasma B cells. 

In this chapter, we provide evidence revealing that WTC dust is potent in perturbing 

the intracellular signaling pathways by inducing MDIG in both normal B cells and MM cells 

and further demonstrating that overexpression of MDIG is significantly associated with the 

malignant transformation of MGUS to active MM, disease exacerbation and poor clinical 

outcomes. Biochemical studies unraveled that MDIG directly interacts with C-MYC and JAK1 

proteins in MM cells, which contributes to the hyperactivation of the JAK1 and STAT3 

signaling important for cell survival, proliferation and development of drug resistance of the 

MM cells.  Taken together, our studies suggest that MDIG may serve as a key mediator for 

MM associated with WTC dust exposure and potential diagnosis/prognosis marker of MM. 

Materials and methods 

Cells and reagents—Human MM cell lines, NCI-H929 and MM1S, bronchial epithelial 

cell line BEAS-2B and normal B cell line C5B7 were purchased from American Type Culture 

Collection (ATCC, Manassas, VA, USA) and maintained in ATCC-recommended culture 

conditions. Inhibitor of C-MYC (10058-F4) and cycloheximide (CHX) were purchased from 

Sigma-Aldrich Co. (St. Louis, MO, USA).  WTC dust was provided by Dr. Kenneth Reuhl at 

the Environmental and Occupational Health Sciences Institute of the Rutgers University. 

siRNA transfection—Transfections were performed using Lipofectamine RNAiMAXT M  

(Invitrogen) according to manufacturer’s protocol.  Fifty nM of siRNAs were used for 

transfection followed by 48-hour incubation.  Control siRNA, MDIG siRNAs and C-MYC 

siRNAs were all purchased from Qiagen (Valencia, CA, USA).  

Immunohistochemistry (IHC)—Tissue microarray slides, T293 and BM483b, 

containing multiple myeloma samples and non-cancerous bone marrow tissue were 
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purchased from US Biomax, Inc (Rockville, MD). IHC staining was performed as previously 

described.30 Briefly, the slides were stained overnight at 4°C with mouse anti-human MDIG 

antibody (Invitrogen) at 1:50 dilution followed by biotinylated goat anti-mouse secondary 

antibody (Dako Denmark A/S, Glostrup, Denmark) at 1:200 dilution for 2 hours at room 

temperature. The slides were then incubated with ABC reagent and DAB (Vector Laboratories, 

Inc. Burlingame, CA), counter stained with hematoxylin and mounted with entellan. All images 

were captured using a Nikon Eclipse Ti-S Inverted microscope (Mager Scientific, Dexter, MI). 

Cut-offs between positive and negative cells were determined according to previously 

characterized MDIG-expressing breast cancer samples. Four random images were taken for 

each sample and both positive and negative cells were counted using ImageJ 1.48v 

(http://imagej.nih.gov/ij/). MDIG expression status of all samples was classified into four 

grades based on the percentage of positively-stained cells. Strongly positive: over 50%; 

moderately positive: between 50% and 25%; weakly positive: between 25% and 5%; negative: 

less than 5%. 

Immunoblotting and Immunoprecipitation (IP)—Immunoblotting and IP analysis were 

performed as previously reported 40. NE-PER Nuclear Cytoplasmic Extraction KIT (Thermo 

Scientific Pierce, Rockford, IL, USA) was used to isolate nuclear proteins. Densitometric 

analysis of CHX-treated samples was completed using ImageJ 1.48v 

(http://imagej.nih.gov/ij/). When detecting C-MYC bands in IP samples, HRP-conjugated 

protein A (EMD Millipore, Temecula, CA, USA) was used to minimize the background noise 

caused by IgG heavy chain. Primary antibodies against phospho-AKT (Ser473), total AKT, 

phospho-STAT3 (Ser727), phospho-STAT3 (Tyr705), total STAT3, phospho-JAK1 (Tyr1022), 

total JAK1, GAPDH, actin and all secondary antibodies were purchased from Cell Signaling 

Technology (Danvers, MA, USA). Antibodies against GP130, IL-6R and methylated-lysine 

were purchased from Abcam (Cambridge, MA). Antibodies against C-MYC and lamin A/C 
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were purchased from Santa Cruz Biotechnology (Dallas, Texas, USA). MDIG (mouse) 

antibody was ordered from Invitrogen. Distinct antibodies used for IP include MDIG (rabbit) 

and C-MYC (mouse) from Abcam (Cambridge, MA, USA), C-MYC (rabbit) from Cell Signaling 

Technology (Danvers, MA, USA), JAK1 (rabbit) from Santa Cruz Biotechnology (Dallas, 

Texas, USA). All presented data are representatives of at least 3 independent experiments. 

Confocal immunofluorescence (IF) analysis—For IF staining, 106 cells were 

centrifuged, fixed by 4% formaldehyde for 15 min, permeabilized by 0.3% Triton X-100 and 

blocked in PBS containing 5% normal goat serum and 0.1% Tween 20 for 1 hour at room 

temperature. Then they were incubated with primary antibodies, anti-JAK1 (rabbit, Santa 

Cruz Biotechnology) and anti-MDIG (mouse, Invitrogen) overnight at 4°C and with Invitrogen 

secondary antibodies, Alexa Fluor 488-linked antibody (goat anti-mouse) and Alexa Fluor 

594-linked antibody (goat anti-rabbit) for 1 h at room temperature in dark. All antibodies were 

used at 1:100 dilutions. Prolong GoldTM antifade reagent with DAPI (Invitrogen) was used to 

preserve the samples. Co-localization of JAK1 and MDIG was detected by Zeiss LSM 780 

confocal microscope (Carl Zeiss Microscopy, Jena, Germany). Pinhole size of 60 µm was 

used while thresholds for laser power, master gain and digital gain were determined by non-

specific binding controls.  DAPI, Alexa Fluor 488 and Alexa Fluor 594 were excited at 405 nm, 

488 nm and 595 nm and corresponding fluorescence emissions were detected at 495 nm, 

563 nm and 640 nm via 3 independent channels.  All photos were processed using ZEN 2012 

SP1 64 bit software (Carl Zeiss Microscopy, Jena, Germany).  

PCR—Total RNAs were extracted using TRIzolTM Reagent (Life Technologies, Grand 

Island, NY, USA) and their integrity was assessed by 18S and 28S ribosomal RNAs. For 

reverse transcription PCR, AccessQuickTM RT-PCR system from Promega (Madison, WI) 

was used. The primers for MDIG are: 5′-TCA TGT CGG GCC TAA GAG AC-3′ and 5′-GGC 

ATT TGA TTC TGC AAA GG-3′, which amplifies a 1,510 bp DNA fragment covering the whole 
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coding region of the MDIG gene. Primers for GAPDH are: 5′-CTG AAC GGG AAG CTC ACT 

GGC ATG GCC TTC-3′ and 5′-CAT GAG GTC CAC CAC CCT GTT GCT GTA GCC-3′. For 

real-time PCR, one µg total RNAs were reverse-transcribed using High-Capacity cDNA 

Reverse Transcription KitTM (Applied Biosystems, Waltham, MA, USA) and 1:20 diluted. Jak1 

and ACTB Taqman Gene Expression Assays (Best CoverageTM) were purchased from 

Applied Biosystems (Waltham, MA, USA). Samples were run in triplicates, quantified by ΔΔCt 

method with actin as reference gene and normalized to “Blank” group. Final results were 

shown as mean ± SD. 

Mass spectrometry and proteomics analysis—Proteomics profiling of binding partners 

were performed as previously reported.  Briefly, samples were subject to co-

immunoprecipitation, 1D-SDS-PAGE separation, in-gel digestion, peptide purification and 

HPLC-ESI-MS/MS analysis. Protein identity was determined by MaxQuantTM software. 

Biostatistics analysis— Protein interaction network analysis was completed using 

Gene Ontology database and visualized by CytoscapeTM 3.2. Binding proteins were first 

sorted according to their biological processes and further refined manually by merging 

repeating and redundant categories. Gene expression data were accessed through Multiple 

Myeloma Genomics Portal (https://www.broadinstitute.org/mmgp/home) for GSE6477 and 

through GEO for GSE39754 and GSE2658 before being processed and visualized using R 

project with ggplot2 package. Survival analysis in Figure 1.3E was performed using Kaplan-

Meier method and the difference between 2 cohorts were determined using log-rank test. In 

Figure 1.3C and 1.3D, differences of mRNA levels between patient cohorts were calculated 

using one-way ANOVA and p-values were adjusted by Holm method. All other mRNA 

expression comparisons were performed using two-tailed t-test. Considering that expression 

levels of related genes are not always strictly linear to each other, we conducted “Force Rank” 

co-amplification analysis. A p-value less than 0.05 is considered statistically significant. 
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Results 

WTC dust induces 

MDIG in bronchial epithelial 

cells, B cells and MM cells. 

The adverse effect of WTC 

dust on the respiratory system, 

including airway inflammation, 

impairment of the pulmonary 

function, airway hyperactivity, 

asthma, and sarcoid-like 

granulomatous pulmonary 

disease, had been well-

established . Indeed, we noted 

that WTC dust is highly 

capable of inducing MDIG 

expression in the bronchial 

epithelial cell line, BEAS-2B cells, in concentrations ranged from 0.15 to 2.4 µg/ml (Fig.1.1A). 

Since concerns had been arisen about the potential for increased risk of MM among WTC 

responders, we also investigated the capability of WTC dust on the induction of MDIG in 

normal B cells using a B cell line C5B7. Similar to what we observed in BEAS-2B cells, we 

noted a dose-dependent induction of MDIG protein and mRNA by WTC dust in C5B7 cells 

(Fig.1.1B). In two MM cell lines NCI-H929 and MM1S, although we did not detect induction 

of MDIG protein, a pronounced induction of MDIG mRNA by WTC dust was observed 

(Figs.1.1C and 1.1D). These data, thus, clearly suggest that in addition to damage the 

Figure 1.1 WTC dust induces MDIG in BEAS-2B cells (A), 

C5B7 cells (normal B cells, B), NCI-H929 cells (MM cell line, 
C), and MM1S cells (MM cell line, D). All of the cells were 
treated with the indicated concentrations of WTC dust for 6 h, 
followed by Western blotting (top two panels) and RT-PCR 
(bottom two panels).  Each panel is representative of at least 
three independent experiments. 
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respiratory system through direct interaction, WTC dust or its components may also influence 

the intracellular signaling of the B cells and the MM cells. 

Increased MDIG expression in the bone marrow (BM) of the MM patient. To 

determine whether MDIG expression is clinically relevant for MM, we evaluated MDIG protein 

levels in the BM specimens of MM patients through immunohistochemistry (IHC).  In total of 

16 cases of MM BM biopsies examined, 8 samples exhibited strong staining of MDIG proteins 

A 

B 

Figure 1.2 Increased MDIG expression in human MM samples. (A) Representative IHC images 
of MDIG expression in bone marrow (BM) of MM patients (n=16), BM of non-hematological 

cancer patients (n = 11), and BM of healthy donors (n = 4).  Magnification: 40×, scale bar: 50μm. 
Strongly positive: over 50%; moderately positive: between 50% and 25%; weakly positive: 
between 25% and 5%; negative: less than 5%. (B) Summary of the IHC results. 
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as judged by the criteria that more than 50% of cells are MDIG positive, 6 samples showed 

moderate or weak MDIG staining and 2 samples are MDIG negative (Figs.1.2A and 1.2B).  

We also checked another set of BM specimens collected from 4 healthy donors and 11 

patients with other non-hematological cancers. MDIG protein was not detected in all 4 healthy 

donors’ BM specimens and 8 out of 11 cases of non-hematological cancer patients. Three 

BM specimens from patients with non-hematological cancers showed weak positive of MDIG 

staining (Figs.1.2A and 1.2B).  

Both MDIG and C-MYC are associated with disease aggressiveness of MM.  

There are several stages during disease development, including premalignant MGUS, 

asymptomatic smoldering MM (SMM), symptomatic MM, and relapsed MM. It has been well-

accepted that C-MYC activation is a hallmark of MM pathogenesis,  especially in the early 

malignant transformation from MGUS to active MM. C-MYC has also been implicated in the 

up-regulation of MDIG. Overexpression of MDIG has been observed in many types of human 

malignancies,  but its potential role in C-MYC-related MM pathogenesis remains unknown. 

To determine whether MDIG contributes to C-MYC-induced MM pathogenesis, we examined 

expression levels of MDIG and C-MYC in MM patients. We noted that both C-MYC and MDIG 

mRNAs are significantly up-regulated in newly diagnosed MM patients when compared to 

healthy donors (Figs.1.3A and 1.3B).  Further analysis of patients at continuous stages during 

MM development has demonstrated a robust elevation trend of both C-MYC and MDIG 

(Figs.1.3C and 1.3D).  Statistically significant increases of MDIG mRNA, from MGUS to active 

MM and from SMM to relapsed MM were noted (Fig.1.3D), suggesting a positive correlation 

between MDIG expression and malignant transformation, disease progression and relapse 

of MM.  

The involvement of MDIG in MM pathogenesis is further supported by survival analysis 

of 559 MM patients. High level of MDIG expression is significantly correlated with the poor 
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overall survival of the MM patients, even though higher percentage of patients from “MDIG 

high” group (82%, 96/117) received intensive therapies than those from “MDIG low” group  

B D C A 

E 

Figure 1.3 Overexpression of MDIG and C-MYC is associated with disease progression and poor 
prognosis of MM. (A) Box plot of relative level of C-MYC mRNA in newly diagnosed MM patients 
and healthy donors (GES39754, n = 176); (B) Box-plot of relative level of MDIG in newly 
diagnosed MM patients and healthy donors (GES39754, n = 176); (C) Expression level of C-MYC 
mRNA in CD138+ plasma cells from healthy donors and MM patients at various stages 
(GSE6477, n = 163); (D) Expression level of MDIG mRNA in CD138+ plasma cells from healthy 
donors and MM patients at various stages (GSE6477, n = 163).  In the plots, boxes denote the 
inter-quartile range (25% to 75%), bars represent medians and whiskers indicate up to 1.5× the 

inter-quartile range which cover 95% of all samples. Outliers are indicated by the black dots. 
Sample sizes of each group are annotated in parentheses and expression levels are displayed in 
log2 scale. (***p<0.001, ** p<0.01). (E) Kaplan-Meier (KM) survival curve of 559 MM patients 
(GSE2658) stratified by their MDIG expression levels. Sample sizes of each group, log-rank p-
value, hazard ratio and 95% confidence intervals are displayed in the figure. Tick marks on each 
arm represent censored samples. 
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(57.7%, 255/442) (Fig.1.3E). Taken together, all above data demonstrate a strong positive 

correlation of MDIG and C-MYC to the pathogenesis and aggressiveness of MM.  

MDIG acts as a key interaction partner of C-MYC in MM cells.  In order to decipher 

inter-regulation between MDIG and C-MYC in MM cells, proteomics study was performed on 

MM cell line NCI-H929 cells to screen their interaction partners, respectively. A total of 224 

and 203 proteins were identified as significant binding partners of MDIG and C-MYC, 

respectively. Among these, 110 binding partners are shared by MDIG and C-MYC (Fig.1.4A). 

Strikingly, physical binding between MDIG and C-MYC was detected by mass-spectrometry 

in NCI-H929 cells (Fig.1.4B), which was further validated by co-IP assay in both NCI-H929 

and MM1S cells (Fig.1.4C), implying that MDIG might be assembled into functional protein 

complexes together with C-MYC and directly participate in C-MYC-induced oncogenesis for 

the development of MM. Subsequent network analysis highlighted some major cellular events 

A 
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upon which C-MYC and MDIG are most likely to impose their impact (Fig.1.4D). Summary of 

sorted binding partners is available in Table 1.1. The shared binding partners are mainly 

clustered in 4 areas: gene expression, post-transcriptional regulation of gene expression, 

mRNA processing, mRNA transport. It is not surprising that C-MYC-only binding partners are 

actively involved in all 4 biological processes and MDIG-only binding partners involved in 

former 2 processes considering the well-established role of C-MYC as an essential 

transcription factor and MDIG as an important epigenetic regulator.  Collectively, these data 

provide a strong rationale that MDIG is a core direct interaction partner of C-MYC and is most 

D 

B C 

Figure 1.4 MDIG directly binds to and extensively cooperates with C-MYC. (A) Proteomic 
identification of the C-MYC-MDIG-centered protein interaction network following C-MYC and 
MDIG pull-downs.  All determined proteins, excluding MDIG and C-MYC themselves, are 
categorized as Myc-only (blue), MDIG-only (green) and Shared (cyan) groups while total 
numbers of each group are listed in the Venn diagram; (B) A chart summarizes all the unique 
peptide sequences of MDIG detected by mass spectrometry in C-MYC pull-downs; (C) Co-
immunoprecipitation (co-IP) assay shows direct physical binding of C-MYC and MDIG in NCI-
H929 and MM1S cells; (D) Summaries of top biological processes that involve interaction 

partners of C-MYC and MDIG. All determined subjects are interrogated by Gene Ontology 
database and are sorted based on biological processes they participate in. 
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likely to collaborate in gene expression-related functions in MM cells. Notably, MDIG-only 

binding partners are also enriched in proteins important for cellular responses to cytokine and  

  MDIG-only     Shared MYC-only 
Gene expression PRMT5, HNRNPUL1, 

CNOT1, CNOT3, 
TNKS1BP1, GARS, 
CNOT10, IARS, 
EPRS,GSPT2 

EDC4, NCBP1, FUS, 
KHSRP, RPN1, SRPR, 
IGF2BP3, SRSF4, 
RPL26, EIF4G1, 
HSPA1A 

RPL10, EIF4A3, SRSF1, PPP2R2A, 
U2AF1, CASC3, ELAVL1, PCBP1, 
HNRNPA1, HNRNPA3, RPS5, 
YWHAZ, HNRNPL, CNOT2, 
HNRNPA2B1, SRSF2, RNPS1, 
EIF3F, HNRNPC, PABPC1, RBMX, 
SRSF7, EIF3A, EIF3B, TNRC6B 

Post transcriptional 
regulation 

CNOT1, CNOT3, 
CCDC88C, 
FAM129A, CNOT10, 
IARS, LARP4B, EPRS, 
CDKN2AIP, HCFC1 

KHDRBS1, YTHDF2, 
NCBP1, FBXW11, 
PRKDC, DDX1, FLNA, 
EIF3CL, IGF2BP3, 
EIF4G1, HSPA1A 

RPS5, EIF4A3, SRSF1, PA2G4, 
CASC3, ELAVL1, PUM2, PURA, 
THRAP3, CAPRIN1, CNOT2, 
DSG1, EIF3F, HNRNPC, PABPC1, 
TARDBP, EIF3A, EIF3B, TNRC6B 

mRNA processing            ____ KHDRBS1, SFPQ, 
CPSF6, NCBP1, FUS, 
KHSRP, SRSF4, SF1, 
EIF4G1 

HNRNPA3, MBNL1, NONO, 
EIF4A3, SRSF1, U2AF1, CASC3, 
HNRNPL, DDX39B, THRAP3, 
PCBP1, CNOT2, TRA2B, TRA2A, 
HNRNPA2B1, SRSF2, RNPS1, 
HNRNPC, PABPC1, TARDBP, 
HNRNPA1, RBMX, SRSF7, SRSF10 

mRNA transport              ____ NCBP1, MX2, 
KHSRP, IGF2BP3, 
SRSF4 

DDX39B, RPSAP58, HNRNPA2B1, 
EIF4A3, SRSF1, SRSF2, RNPS1, 
U2AF1, CASC3, HNRNPA1, 
SRSF7, SRSF10 

DNA damage repair  VCP, WRN, RAD50, 
XRCC5, RPA1 

XRCC6, PRKDC            ____ 

Response to cytokine OAS2, EPRS, CD44, 
JAK1 

        ____            ____ 

Antigen processing & 
presentation 

RACGAP1, RFTN1, 
KLC1, SEC31A, 
SPTBN2 

        ____            ____ 

antigen processing and presentation, which is in agreement with our previous findings 

suggesting that MDIG contributes to the function of the T helper 17 (Th17) cells.  Most recently, 

we discovered that MDIG interacts with the DNA double strand break repair proteins in the 

non-homologous end-joining (NHEJ) pathway in human bronchial epithelial cells and lung 

cancer cells.  In MM cells, we also identified at least 7 DNA repair proteins that interact with 

Table 1.1 Summary of sorted binding partners. 
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MDIG, including XRCC5, XRCC6, RAD50, etc. (Fig.1.4D and Table1.1), indicating that MDIG 

may also be involved in handling cellular stress caused by ongoing DNA damages, a common 

feature in human MM.  Full lists of the determined binding partners are available in Table 

S1.1 and S1.2. 

MDIG binds JAK1 in MM cells.  Among the most important signaling pathways, IL-

6/JAK/STAT3 signaling has been viewed as an indispensable signal for the malignant 

transformation of plasma B cells and proliferation of the MM cells.  Through cooperation with 

C-MYC, this signaling pathway drives formation of high malignant MM in mouse model. It is 

Figure 1.5 Direct interaction between MDIG and JAK1. (A) Proteomic identification of the 
unique peptide sequences of JAK1 detected by mass spectrometry in MDIG pull-downs; (B) 

Co-IP assay demonstrates the physical binding between MDIG and JAK1 in total cell lysates; 
(C) Confocal microscopy shows co-localization of MDIG and JAK1 in NCI-H929 and MM1S 
cells. Primary antibodies: JAK1 (rabbit anti-human) and MDIG (mouse anti-human).  
Secondary antibodies: Red (goat anti-rabbit) and Green (goat anti-mouse). Sites of co-
localization are indicated by arrows. (D) Immunoblotting of MDIG and JAK1 in nuclear extracts 
(N) and cytosolic fractions (C) in 2 MM cell lines. The volume ratio of final nuclear extracts 
over cytosolic fractions is 1:4. In this test, cytosolic proteins (30µg) and nuclear protein at 
identical volume ratio were used to reflect the distribution of target proteins in indicated cellular 
compartments. Lamin A/C and GAPDH are used as markers for nucleus and cytosol, 
respectively. 
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unclear how this crosstalk is established between the oncogenic signal and cytokine signal. 

It is noteworthy that proteomic study identifies JAK1, a key regulator mediating cytokine-

induced signaling, as a significant interaction partner of MDIG (Fig.1.5A and Table 1.1). 

Based on these observations, co-IP assay was performed using total cell lysates of both NCI-

H929 and MM1S cells and confirmed such a physical interaction (Fig.1.5B). The interaction 

of MDIG and JAK1 was additionally verified by immunofluorescent staining and confocal 

microscopy. Multiple co-localization sites of MDIG and JAK1 were observed in the extra-

nuclear area in both NCI-H929 cells and MM1S cells (Fig.1.5C). MDIG has long been 

recognized as a nuclear protein, whereas JAK1 is believed to be a cytosolic protein in the 

proximity of cytokine receptors. It is interesting to know how a nuclear protein can interact 

with a cytosolic protein. To answer this question, different cellular compartments were 

separated through fractionation. Surprisingly, in both MM cell lines, a significant portion of 

MDIG was found in cytosol though the majority of MDIG located in nucleus (Fig.1.5D). Thus, 

cytosolic localization of MDIG may be accounted for the proximity and physical interaction 

between MDIG and JAK1. This is also the first observation of MDIG in cytosol of human cell 

lines without additional manipulation, although we had also noted cytosolic localization of 

MDIG in MDIG-overexpressed or arsenic-treated A549 cells. 

MDIG demethylates and stabilizes JAK1.  To investigate the biological function of 

MDIG-JAK1 interaction, we further studied the role of MDIG on the gene expression and 

protein stability of the JAK1 protein in MM cells. The co-amplification analysis on MM patients 

exhibits no significant difference of JAK1 mRNA level between “MDIG high” and “MDIG low” 

groups (Fig.1.6A). In NCI-H929 cells, genetic silencing of MDIG does not affect mRNA level 

of JAK1 (Fig.1.6B), while in MM1S cells, MDIG knock-down groups displayed slightly higher 

JAK1 mRNA expression than the control group (Fig.1.6C). However, on the protein level, 

silencing MDIG resulted in a considerable decrease of total JAK1 protein (Fig.1.6D). We also 
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Figure 1.6 MDIG stabilizes JAK 1 through demethylation. (A) Correlation analysis of MDIG 
and JAK1 mRNA expressions in MM patients. Methods and parameters used are same as 
described in Figure 1.3 (***p<0.001); (B-C) qRT-PCR shows relative expression levels of 

JAK1 in NCI-H929 (B) and MM1S (C) cells treated with control siRNA and 3 different siRNAs 
against MDIG. The values are normalized to blank group (BLK) and displayed as mean ± SD 
(n = 3, * p<0.05). Raw data are available in Table S1.3 and S1.4; (D) Immunoblotting analysis 
of JAK1 expression in 2 MM cell lines treated with control and 3 different MDIG siRNAs; (E) 
Immunoprecipitation (IP) and immunoblotting of JAK1 in 2 MM cell lines treated with control 
siRNA and siRNA against MDIG. Me-lysine refers to an antibody selectively targets 
methylated lysine. Bands of methylated lysine residues on JAK1 are indicated by arrows. (F-
G) Immunoblotting of cell lysates collected after cycloheximide (CHX) (10µg/mL) treatment 
at indicated time in non-treated NCI-H929 cells (F) or those pretreated with control siRNA or 
MDIG siRNA (G). (H) Densitometric analysis of the CHX chase results to determine the half -
life of JAK1 protein.  
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performed cycloheximide (CHX) chase assay in NCI-H929 cells. Without additional treatment,  

we noted the half-life (T1/2) of JAK1 is over 8h (Figs.1.6F and 1.6H), which is longer than the 

3.2 h as suggested by an earlier report. The control siRNA did not significantly affect the T1/2 

of JAK1, while selective silencing of MDIG shortened T1/2 of JAK1 to 3.5 h (Fig.1.6G and 

1.6H). Collectively, these data suggest that MDIG affects the JAK1 protein level through some 

posttranslational mechanisms. Given the potential activity of MDIG on lysine demethylation,  

we hypothesize that MDIG may regulate JAK1's stability by removing the methyl groups from 

its lysine residue(s). Because there is no report of JAK1 methylation so far and the 

unavailability of antibodies targeting methylated JAK1, we first immunoprecipitated and 

collected JAK1 protein from the control and MDIG-silenced MM cells and then probed the 

samples with an antibody that selectively recognizes methylated lysine. As shown in Figure 

1.6E, a notable lysine methylation on JAK1 was detected in both NCI-H929 and MM1S cells 

when MDIG was genetically silenced. In the cells transfected with a control siRNA, the JAK1 

methylation couldn’t be detected.  

MDIG and C-MYC are required for the hyperactivation of the IL-6 signaling.  

Synergetic collaborations between C-MYC and IL-6 pathways have been well-documented 

in MM.  Prompted by the implications from proteomics studies above, we next interrogated 

the possibility of MDIG in mediating the oncogenic crosstalk between C-MYC and IL-6 

signaling. Consistent with a previous report, our biochemical analysis demonstrated that 

genetic silencing of MDIG results in decreased protein levels of GP130, but not IL-6R in both 

NCI-H929 and MM1S cell lines (Fig.1.7A). Moreover, MDIG silencing further leads to 

attenuated phosphorylation of major downstream effectors on IL-6 signaling pathway, 

including STAT3 on both Tyrosine 705 and Serine 727 sites, and AKT on Serine 473 site, but 

not their total protein levels (Fig.1.7A). On the other hand, inhibition of C-MYC leads to a 

significant decrease of total protein levels and activity of MDIG and most regulators on IL-6 
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pathway mentioned above (Fig.1.7B and 1.7C), indicating that C-MYC is an essential 

transcription factor in MM cells while MDIG specifically cooperates with C-MYC in promoting 

overexpression of GP130 and, consequently, causes amplification of the IL-6 signaling for 

cell survival and growth.  

Discussion 

Considerable progress in understanding the molecular pathogenesis of MM has been 

achieved in the past years.  However, many important questions remain to be answered, such 

as the risk factors for MM and the extensive crosstalk between various oncogenic 

mechanisms in MM. Bone marrow is a complex and dynamic microenvironment with stromal 

cells, osteoclasts, T lymphocytes, cytokines and growth factors, which are critical for disease 

evolution of MM. In such a profoundly-intertwined regulatory network of malignancy, 

oncogene C-MYC and cytokine IL-6 have long been viewed as major internal driving forces 

for MM.  Our studies have demonstrated that MDIG is a key mediator in synergizing C-MYC 



www.manaraa.com

19 
 

 
 

and IL-6 signaling through direct interaction with C-MYC and JAK1. By both upregulating and 

sustaining key regulators in IL-6 pathway, MDIG enables MM cells to take advantage of this 

critical intracellular pathway to achieve abnormal cell proliferation and apoptosis escape. 

These results explain, at least in part, the mechanisms underlying the observed synergetic 

collaboration between IL-6 pathway and C-MYC in promoting oncogenesis of the plasma cells.  

A study by Moline et al  suggested an increased incidence rate and early onset of MM 

among the first responders exposed to the WTC dust. A follow-up study by Li et al on 55,778 

people, including rescue workers, recovery workers, and those who lived or worked near the 

WTC, also found a higher rate of MM, in addition to thyroid and prostate cancers.  The WTC 

dust released from the collapse of the twin towers after 9/11 attack is a mixture of mineral 

particles, fibers, metals, and chemicals, many of which are established human carcinogens. 

Since MDIG was originally identified as a mineral dust-induced gene from coal workers who 

exposed to mining and coal dust in a daily basis, we sought to determine whether induction 

of MDIG can be indicative for the association of multiple myeloma and WTC dust.  Indeed, 

we found that WTC dust is highly capable of inducing MDIG expression in bronchial epithelial 

cells, normal B cells and the MM cells.  Although the results reported here can be viewed as 

circumstantial, they may be considered as “proof of principle” to address the carcinogenic 

potential of environmental factors on the development of MM. 

The findings that MDIG is strongly associated with the disease progression of MM 

patients suggest that MDIG can be potentially used as a prognostic marker to guide clinical 

management of the MM patients. A similar role of MDIG had been reported in human gastric 

carcinoma. Our analysis shows that MDIG mRNA significantly increases as disease 

progresses. Notably, the increases of MDIG expressions in MM verse MGUS and MM versus 

SMM are both statistically significant. In addition, high level of MDIG is also significantly 

associated with poor overall survival of the MM patients. Collectively, these data implicate the 
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potential of MDIG as a predictor for disease progression and clinical outcomes. Moreover, 

this study has provided a rationale for targeting MDIG in future anti-MM therapies, especially 

for early interventions. In the cellular models, we have demonstrated that genetic silencing of 

MDIG in MM cells leads to constitutive suppression of GP130 (IL-6ST) and pro-survival 

regulators, STAT3 and AKT, suggesting that MDIG inhibition could be a possible strategy to 

suppress tumor growth in IL-6-dependent MM subtypes or sensitize them to IL-6-targeted 

agents. Currently, there is no effective treatment specifically designed for smoldering multiple 

myeloma (SMM), an asymptomatic transition status between MGUS and active MM. In fact, 

uncertainties remain on the trade-off between benefits of using routine non-specific therapy 

and risks of unintended toxicity.  According to our findings, MDIG overexpression occurs at 

early stage of disease and drives oncogenesis of MM. Thus, selective inhibition of MDIG 

could also be a reasonable option for early clinical intervention or even prevention of MM.  

 The MDIG protein contains a conserved JmjC domain without classic chromatin- or 

DNA-binding domains.  In accordance with a recent report,  our proteomic analysis has 

unraveled direct interactions of MDIG with a number of chromatin-binding proteins and DNA 

repair proteins.  Given that our current findings have clearly demonstrated a regulatory circuit 

among C-MYC, MDIG and IL-6 signaling, it is plausible to speculate that MDIG may be 

assembled into protein complexes along with chromatin- or DNA-binding protein(s), like C-

MYC, and be recruited to MM-specific signature genes, including GP130, and exerts its 

regulatory functions on gene expression. On the other hand, recent studies have discovered 

that transcription-related regulators can translocate to different cellular compartments and 

carry out non-canonical functions. For example, Enhancer of Zeste Homolog 2 (EZH2), a 

well-documented epigenetic silencer for gene transcription, has been shown to directly 

interact with and methylate STAT3.  Similarly, in the present report, we have observed that 

MDIG binds to and demethylates JAK1 in cytosol, leading to stabilization of the JAK1 protein. 
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Considering that ubiquitylation is reported as the most common modification on lysine 

residues of JAK1, and the report that lysine methylation may create a docking site for certain 

ubiquitin ligases,  it is very likely that MDIG may remove the methyl group from the lysine 

residue(s) on JAK1 and subsequently prevent the action of the ubiquitin ligases on JAK1 

protein. On the other hand, MDIG has also demonstrated enzymatic activity that catalyzes 

histidine hydroxylation of ribosomal proteins in a wide range of organisms, from prokaryotes 

to humans. Considering that lysine demethylation results from hydroxylation, the MDIG-JAK1 

binding may theoretically cause other types of modifications of JAK1 than demethylation in 

MM cells, for example, hydroxylation. Further studies are required to fully elucidate the 

molecular basis of MDIG-induced modifications of JAK1 and the precise role of MDIG in 

maintaining the levels of JAK1 protein and function.  

This research has also provided hints for future MDIG and MM studies. For example, 

our proteomics data show that MDIG interacts with 7 proteins related to DNA damage repair 

(DDR). A recent study in lung cancer model demonstrates that physical binding between 

MDIG and some of these DDR-related proteins significantly inhibits the ability of these DDR-

related proteins to repair DNA double strand break.  If this is the case in MM, MDIG may also 

contribute to genome instability, which further leads to aberrantly altered karyotypes, a 

common feature in MM cells.  
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CHAPTER 2 UNRAVEL NOVEL MECHANISMS OF RESISTANCE TO EGFR TYROSINE 

KINASE INHIBITORS IN LUNG CANCER  

Introduction 

Lung cancer is responsible for 1.38 million annual deaths worldwide, making it the 

leading cause of cancer-related mortality in the USA and throughout the world. Lung cancer 

can be histologically classified into small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC) and the latter subtype constitutes 80% of lung cancers. Among all NSCLC 

patients, overexpression of the epidermal growth factor receptor (EGFR) is found in 40-80% 

cases while further studies show that about 25% of all NSCLC patients harbor "activating 

mutations" in the EGFR tyrosine kinase domain, including deletions in exon 19 and L858R in 

exon 21. Considering the pivotal role of EGFR in transducing signals for cell proliferation, cell-

cycle progression and activation of anti-apoptosis, targeting oncogenic EGFR signaling 

pathway becomes a promising therapeutic strategy against NSCLC.  

Gefitinib and erlotinib are two most widely applied first-generation targeted agents 

inhibiting the activity of EGFR and downstream signaling by competitively blocking the binding 

of adenosine triphosphate (ATP) to active residues on EGFR tyrosine kinase domain. Though 

gefitinib has shown dramatic therapeutic effects on patients with certain clinical features, such 

EGFR tyrosine kinase inhibitor (TKI) -based therapy is still suffering from two major limitations , 

that is, biased drug responses (primary resistance) and inevitable acquired resistance 

(secondary resistance).  

First of all, predicting gefitinib responses in NSCLC patients has always been 

challenging partly due to the complexity of EGFR signaling pathway itself and its frequent 

crosstalk with other intracellular signaling pathways. Responses to gefitinib vary dramatically 

in NSCLC patients. Clinical evidence has shown that tumors harboring previously mentioned 

“activating mutations” in EGFR generally respond well to gefitinib treatment but expression 
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levels of EGFR is not significantly correlated with robust drug response. Theoretically, NSCLC 

patients with overexpression of wild-type EGFR are also anticipated to benefit from EGFR 

TKI, but satisfying responses have only been noted in about 10% of these patients.  In 

agreement with the clinical observations, NSCLC cell lines also display a broad range of 

sensitivity to EGFR TKIs. Such discrepancy between theoretical efficacy and actual statistics 

indicates there might be some critical mechanisms modulating tumor responses to gefitinib 

and in-depth researches are needed to fully elucidate them. In the past decade, accumulating 

evidence has demonstrated that certain key regulators can activate alternative signaling 

pathways to circumvent the suppressed EGFR after EGFR TKI treatment, such as mutant 

KRAS, hyperactivated insulin-like growth factor 1 receptor (IGF-1R) and gefitinib-induced 

STAT3-AKT activation loop. Inspired by these findings, many translational researches and 

clinical trials testing co-targeting strategies against EGFR and “bypass” regulators have been 

carried out. For example, it has been reported that AKT inhibitor and gefitinib have shown 

synergistic anti-tumor effects against NSCLC cell lines. Thus, combinational targeting has 

gradually become a promising and practical option to enhance the efficacy of targeted agents 

in cancer treatment. However, intracellular signaling system of cancer cells is a widely 

interconnected, multidirectional and dynamic network, which makes it very hard to locate the 

potential “bypass” nodes. In this part, we used integrative methods to approach this problem. 

We accessed large collections of cancer cell line genomics and drug toxicity profiles and 

systematically screen gene expressions of 11 gefitinib-sensitive and 5 non-sensitive NSCLC 

cell lines.  Subsequent bioinformatics analysis has identified TGF-β, Wnt, Hedgehog and 

JAK-STAT pathways as candidate “bypass” pathways. Though these four pathways have 

been clearly demonstrated to facilitate cell proliferation, apoptosis escape and metastasis in 

human lung cancer, their potential roles in modulating cellular responses to gefitinib are 

under-studied.  
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Considering the active role of STAT3 in EGFR signaling pathway, we picked JAK -

STAT pathway for further study. STAT3 belongs to the STAT (Signal transducer and activator 

of transcription) protein family which is essential for cellular functions. Activation of STAT3 is 

determined by phosphorylation at tyrosine 705 residue and strengthened by phosphorylation 

at serine 727 residue. Classically, two categories of pathways are mediating STAT3 tyrosine 

phosphorylation, one is receptor tyrosine kinase signaling, including EGFR, the other one is  

cytokine-signaling pathway, including IL-6/ Janus-activated kinases (JAK). Aberrant 

expression and activity of STAT3 have been observed in both carcinogenesis and 

development of drug resistance in several cancer types, including NSCLC, suggesting that 

STAT3 may serve as a bypass regulator to offset EGFR TKI treatment in lung cancer.  

Our molecular biology experiments have demonstrated that non-sensitive lung cancer 

cell lines exhibit highly refractory JAK2-STAT3 signaling axis to gefitinib treatment. Moreover, 

in these cell lines, gefitinib treatment induces, rather than suppresses STAT3 activation. We 

have further demonstrated that gefitinib not only promotes the direct interaction between 

EGFR and STAT3, which is needed for STAT3 activation, but also affects the upstream 

regulators of STAT3 in a dose-dependent manner. Low dose of gefitinib suppresses SOCS3 

only while high dose inhibits both SOCS1 and SOCS3. As a result, activated STAT3 restores 

activation of AKT that is initially inhibited by gefitinib.  AKT is an oncogenic protein kinase that 

is associated with cell survival and proliferation. Restoration of AKT activation eventually 

facilitate the lung cancer cells to survive EGFR interruption.  Follow-up cell proliferation 

studies show that simultaneous inhibition of STAT3 sensitizes the cancer cells to gefitinib -

induced repression of cell growth. Collectively, our data from this part have indicated that 

gefitinib-induced STAT3 activation and subsequent AKT recovery may act as a novel 

mechanism of primary resistance against gefitinib in NSCLC. Accordingly, combinational 
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targeting of STAT3 and EGFR may enhance the efficacy of EGFR TKI-based therapy in lung 

cancer patients with EGFR overexpression. 

On the other hand, all patients including those who initially respond well to gefitinib will 

become resistant after 6-9 months’ treatment which finally leads to treatment failure.   Based 

on these clinical situations, Jackman and colleagues have introduced the concept of Acquired 

Resistance to EGFR TKI with the following criteria: 1, previous treatment with a single-agent 

EGFR TKI; 2, a tumor that harbors an EGFR “activating” mutation or objective clinical benefit 

from treatment with an EGFR TKI; 3, systemic progression of disease while on continuous 

treatment with gefitinib or erlotinib within the last 30 days; 4, no intervening systemic therapy 

between cessation of gefitinib or erlotinib and initiation of new therapy . Researches into this 

problem have revealed many important resistance mechanisms, such as EGFR T790M 

secondary mutation resulting in higher ATP binding capacity, aberrant amplification of MET 

which bypasses the inhibited EGF receptors and in very rare cases, transformation from 

NSCLC to small cell lung cancer (SCLC). The former two major resistance mechanisms are 

reported to occur in about 50% and 30% of resistant cases, respectively. However, resistance 

mechanisms remain unclear in about 20% of all resistant cases. Actually, the situation might 

be far more complicated than expected given the fact that the resistance mechanisms 

frequently overlap with others, for example, about 50% of resistant patients with MET 

amplification also harbor EGFR T790M mutation. Moreover, second generation EGFR TKI 

(afatinib) designed to overcome the EGFR T790M mutation has failed to show expected 

therapeutic efficacy. Taken together, these studies suggest that some other unknown 

mechanisms, such as non-oncogenic or oncogenic dependent drug resistance, existing alone 

or simultaneously with currently identified alterations of the EGFR signaling, may play an 

important role in the development of acquired resistance to EGFR TKI. To test this hypothesis, 

we have established a gefitinib-resistant (GR) NSCLC cell line through 180-day exposure to 
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gefitinib at maximal tolerable dose (16µM). Compared to Parental cells, GR cells exhibited 

decreased sensitivity to gefitinib and enhanced anchorage-independent growth and 

aggressiveness, which is consistent with the clinical manifestation of resistant lung cancers. 

Then we performed microarray analysis and molecular biology experiments on GR cells to 

profile the resistant gene expressions and characterize the altered signaling pathways. Our 

data indicate that multiple resistance mechanisms co-exist in the GR cells. One of them is 

hyperactivation of STAT3 pathway, characterized by shift of phosphorylation pattern (from 

tyrosine705 to serine727 residue) and enhanced transcription activity of STAT3. Based on 

these results, we co-inhibited STAT3 and EGFR in GR cells and this treatment re-sensitizes 

the GR cells to gefitinib by suppressing several survival-related pathways, including IL6-JAK-

STAT3, MAPK, TGF-BETA, ERBB, mTOR and VEGF pathways. Collectively, our study has 

revealed novel mechanisms of acquired resistance to EGFR TKI in lung cancer, and more 

importantly, has provided a strong rationale for combinational targeting of STAT3 and EGFR 

as a potential strategy to overcome acquired resistance.  

Material and methods 

Cell culture and reagents—The human NSCLC cell lines A549, NCI-H2023 and NCI-

H2026 were purchased from the American Type Culture Collection (ATCC) (Manassas, VA) 

and all the cell lines were maintained in ATCC recommended protocol. Gefitinib-naïve A549 

cells were cultured in full growth medium containing 16µM of gefitinib. After 180 days of 

exposure, the gefitinib-resistant (GR) cell line was established. Parental A549 cells from same 

original stock cultured in gefitinib-free medium alongside the GR cells during cell line 

establishment were used as control cell line. STAT3 inhibitor V, Stattic, was purchased from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 

siRNA transfection—Total of 4×105 cells per well were seeded into 6-well plates and 

incubated until they reached 50% confluence. siRNAs at a final concentration of 50nM were 
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then forward-transfected using Lipofectamine RNAiMAXTM (Invitrogen) following 

manufacturer protocol.  Cells were cultured for 24 hours for gene silencing followed by 

sequential treatment of gefitinib. siRNA against STAT3 and control siRNA were purchased 

from Cell Signaling (Danvers, MA). 

Western Blotting—Cells were lysed by 1xRIPA cell lysis buffer (Cell Signaling) 

supplemented with protease and phosphatase inhibitors cocktail (Roche, Indianapolis, IN) 

and 1mM PMSF. Collected cell lysates were then homogenized by sonification and insoluble 

debris was removed through centrifugation of 13,000g at 4 °C for 15 minutes. The 

concentrations of protein were then determined using Pierce BCA Protein Assay KitTM 

(Thermo Scientific, Rockford, IL). The protein samples were prepared using 4×LDS sample 

buffer (Invitrogen) with dithiothreitol at a final concentration of 200mM and were denatured 

by boiling at 95°C for 5 minutes before separation by 7.5%, 10% or 12% SDS-PAGE gel, 

where appropriate. Separated samples were then transferred onto PVDF membrane 

(Invitrogen) and blocked with 5% non-fat milk diluted in TBST for 1 hour at room temperature. 

After washing with TBST, the membranes were incubated with indicated primary antibodies 

for overnight at 4°C and corresponding alkaline phosphatase (AP)-coupled second antibodies 

for 1hour at room temperature before detecting. CDP-StarTM Reagent (New England Biolabs) 

was used to visualize the signals on autoradiography films. Primary antibodies against 

phospho-AKT (Ser473), phospho-AKT (Thr308), total AKT, phospho-STAT3 (Ser727), 

phospho-STAT3 (Tyr705), total STAT3,  phospho-EGFR (Tyr1068), phospho-EGFR (Thr669), 

total EGFR, phospho-PI3K (Tyr458), PI3K, PTEN, phospho-P38 (Thr180/tyr182), P38, 

phospho-ERK(1/2) (Thr202/tyr204), ERK, phospho-JNK (Thr183/Tyr185), JNK, phosphor-

GAPDH, beta-actin and AP-linked mouse IgG were purchased from Cell Signaling (Danvers, 

MA).  Antibodies against SOCS1 and SOCS3 purchased from Millipore (Temecula, CA) and 

Abcam (Cambridge, MA), respectively.  
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Immunofluorescent staining—5×104 A549 cells per well were plated into 24-well plates. 

Cells were allowed to grow and attach for 24hours before time-dependent treatment to 4μM 

gefitinib for up to 6 hours and fixation with 4% formaldehyde for 15 min at room temperature. 

After brief washing with PBS, cells were blocked in 1×PBS containing 5% normal goat serum 

and 0.3% Triton X-100 for 1 hour and EGFR antibody for another hour. Then cells were 

incubated in Alexa Fluor 488 or FITC-linked goat anti-rabbit IgG (Invitrogen) for 1 hour in dark. 

One drop of Prolong GoldTM antifade reagent with DAPI (Invitrogen) was added to each well 

before photography. 

Immunoprecipitation—Cells were lysed in non-denaturing lysis buffer containing 

137mM NaCl, 20mM Tris-HCl (pH8.0), 10% glycerol, 2mM EDTA and 1% NP-40 

supplemented with protease and phosphatase inhibitors cocktail (Roche). After gentle 

agitation for 30 minutes and purification by centrifugation of 13,000g, the lysates were pre-

cleared with rabbit IgG (Santa Cruz) and protein A/G plus beads (Santa Cruz). 800μg of 

protein for each sample was incubated with indicated antibodies at a dilution ratio of 1:100 at 

4°C for overnight. The protein samples were further incubated with 40μL of protein A/G plus 

beads (Santa Cruz) for 4 hours at 4°C, followed by 3 washes with non-denaturing lysis buffer. 

The prepared samples were then detected with Western Blot as described above.  

Cell proliferation assay—5x103 A549 cells diluted in 100μL full growth medium were 

seeded into 96-well plate. After 24 hours, 100μL medium containing indicated concentration 

of gefitinib with or without STAT3 inhibitor was added to each well and each dose was tested 

in triplicates. CyQUANT NF Cell Proliferation Assay KitTM (Invitrogen) was used to stain viable 

cells. After 30 minutes in dark, the intensity of fluorescence was measured using BioTek 

Synergy 2 plate reader (BioTek, Winooski, VT). 

Soft-agar colony formation assay– 2x104 cells mixed in 0.33% agar were seeded on 

top of a solidified layer of 0.5% agar in 6-well plates. The cells were fed with full growth 
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medium every 3 days. After 14 days, all the samples were photographed using Nikon Ti 

Microscope and the photos were processed using NIS-Elements BR3.2 software. Colonies 

with a diameter larger than 200µm and area over 30000 µm2 were considered as qualified 

colonies. We counted 4 cm2 area per well and the results were presented as colony number 

per cm2. 

Migration and invasion assay— Migration and invasion activity of parental cells and 

GR cells were measured using BD BioCoat™ Matrigel™ Invasion and Migration Chambers 

following the manufacturer's protocol. All cells were incubated 24 hours for migration test and 

48 hours for invasion test before being fixed and stained using Diff-Quik Kit. Cells remaining 

in the chamber were removed by cotton swabs. The migrated and invasive cells were then 

photographed and counted using Nikon Ti Microscope and NIS-Elements BR3.2 software. 

Microarray and data analysis—Total RNAs of Parental cells, GR cells, GR cells treated 

with Stattic (GS) were extracted using TRIzol Reagent following manufacture’s protocol (Life 

Technologies, Grand Island, NY, USA) and their integrity was assessed by 18S and 28S 

ribosomal RNAs. The qualified RNA samples were sent to Phalanx Biotech (San Diego, CA) 

for further process. RNA quantity and purity were verified, followed by target preparation and 

hybridization to Human OneArray Plus gene expression microarray (Phalanx Biotech). 

Standard selection criteria to identify differentially expressed genes (DEGs) are as follows: 

(1) Log2 value for fold change ≥ 1 and P < 0.05, (2) Log2 ratios= NA and the differences of 

intensity between the two samples >=1000. Gene clustering analysis was performed on 

selected DEGs after data transformation and mean centering by averagely linkage algorithm.  

Gene set enrichment analysis (GSEA) was used to further characterize the differences 

of the enriched gene sets between Parental cells vs. GR cells, GR cells vs. GS cells. GSEA 

is a method to identify whether certain gene sets (a collection of mutually related genes) 

instead of single genes are enriched in an independent rank-ordered profile of genes that are 
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differentially expressed. In the current analysis, software GSEA2-2.2.2 (Broad Institute) was 

used and signal-to-noise was selected as genes ranking metric and 1000 was used for 

number of permutations. 

Statistical analysis—Results of quantification of immunoblotting data, colony formation 

assay, migration and invasion assays were analyzed by Student’s t-test and shown as 

mean±SD. Cell proliferation data was processed using two-way ANOVA and the statistical 

significance of differences in inhibitory effects between different treatments and samples were 

determined by Post-hoc tests. For all experiments, p < 0.05 is considered as statistically 

significant.  

Results 

TGF-β, Wnt, Hedgehog and JAK-STAT pathways are potential “bypass” 

candidates mediating primary resistance to gefitinib.16 primary human NSCLC cell lines 

with EGFR alterations were selected and subject to bioinformatics analysis for primary drug 

resistance-related pathways.  The cell lines were grouped based on their gefitinib sensitivity 

and major mutation status. Cell lines with IC50 under 2μM were defined as sensitive (S group) 

and those with IC50 over 8μM as non-sens itive (N group). Since EGFR activating mutations 

have been shown to cause potent addiction to 

EGFR signaling pathways, we further sort the 

cell lines from S group into “S group with wild-

type EGFR” (SW group) and “S group with 

mutant EGFR” (SM group). Similarly, 

considering the established role of mutant 

Kras in counteracting gefitinib, the N group 

cell lines were also subdivided into “N group 

with mutant Kras” (NM group) and “N group 

Figure 2.1 Hierarchical clustering of 16 NSCLC 
cell lines used in the study based on their gene 
expression profiles. 
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with wild-type Kras” (NW group). All the groups of NSCLC cell lines are listed in Table 2.1. 

Then, gene expression data of the designated cell lines were clustered and the differential ly 

expressed genes (DEGs) were identified via Characteristic Direction method. As shown in 

Figure 2.1, the cell lines sorted into the same groups exhibit similar gene expression profiles. 

Next, two tests, SW group versus NW group and SW group versus NM group, were performed 

separately. The identified DEGs were then subject to signaling pathway impact analysis using 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then the highlighted 

Cell Lines Histology  IC50(uM) 
 

EGFR 
CNV 

EGFR 
Expression 

EGFR 
Mutation 

Kras 
Mutation 

Group 

A549 AD 9.6 0.1163 0.61529 WT p.G12S NM 

HCC-44 
AD 7.9 0.3605 0.87639 WT p.G12C NM 

ABC-1 
AD 8 0.7321 1.0867 WT WT NW 

EBC-1 
SQ 10 0.4354 0.72721 WT WT NW 

NCI-H1703 AD 8 0.8629 0.60114 WT WT NW 

HCC-2279 
AD 0.03 1.4577 1.4334 exon 19 del WT SM 

HCC4006 
AD 0.02 1.3014 1.1394 exon 19 del WT SM 

HCC827 
AD 0.04 3.2468 3.081 exon 19 del WT SM 

NCI-H1650 
AD 1 1.1195 1.2502 exon 19 del WT SM 

PC-14  
AD 0.0309 1.1248 1.1358 exon 19 del WT SM 

NCI-H3255 
AD 0.015 2.5269 2.6756 L858R WT SM 

HCC-95 
SQ 1.9 0.322 0.65042 WT WT SW 

NCI-H1648 
AD 0.38 0.3608 0.93588 WT WT SW 

NCI-H2126 
LCC 1 0.3287 0.51548 WT WT SW 

NCI-H322 
AD 0.3 -0.0224 1.1254 WT WT SW 

Calu-3 AD 0.3 0.874 0.19162 WT WT SW 

 

Table 2.1 Characteristics of the NSCLC cell lines used in the study including copy number variation and expression 
level of EGFR, mutation status of EGFR and Kras, gefitinib IC50 and mutation-based classification of gefitinib 
sensitivity. The CNV and expression level of EGFR are displayed in log2 scale. AD: adenocarcinoma, SQ: 
squamous-cell carcinoma, LCC: large-cell carcinoma, NM: non-sensitive cells with Kras mutation, NW: non-
sensitive cells with wild-type Kras, SM: sensitive cells with EGFR activating mutations, SW: sensitive cells with 
wild-type EGFR 

 

http://www.broadinstitute.org/ccle/cell%20lines/HCC44_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/ABC1_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/EBC1_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/HCC2279_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/HCC4006_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/HCC827_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/NCIH1650_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/PC14_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/NCIH3255_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/HCC95_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/NCIH1648_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/NCIH2126_LUNG
http://www.broadinstitute.org/ccle/cell%20lines/NCIH322_LUNG
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signaling pathways were manually filtered 

based on their biological function. The 

signaling pathways not related to cell 

proliferation or apoptosis escape were filtered 

out and the pathways sharing massive 

overlapping DEGs with each other were 

combined into the one with highest 

significance. In NW group cell lines, TGF-β, 

Wnt, Hedgehog and JAK-STAT pathways were 

implicated. Notably, in NM group, the same four pathways were highly implicated with only a 

minor difference in the rank order, that is, TGF-β, JAK-STAT, Wnt and Hedgehog (Table 2.2), 

suggesting non-sensitive cell lines, with mutant Kras or not, may share similar alternative 

downstream pathways to counteract gefitinib treatment. Taken together, these results 

strongly indicate that TGF-β, Wnt, Hedgehog and JAK-STAT pathways may play a significant 

role in modulating cellular responses to gefitinib among NSCLC cells. 

Sensitive and non-sensitive NSCLC cell lines exhibit distinct response patterns 

of key protein regulators to gefitinib treatment. Activation of EGFR is closely linked to 

prosurvival signaling pathways, including AKT and STAT3. Considering STAT3 pertaining to 

putative “bypass” pathways, we performed time course study to investigate the differences in 

responses to gefitinib between sensitive and non-sensitive cell lines. 3 NSCLC cell lines were 

used, including 2 non-sensitive cell lines, A549 and NCI-H2023, and 1 sensitive cell line, NCI-

H2126 (Fig.2.2A). As shown in Figure 2.2B and 2.2C, gefitinib is capable of inhibiting the 

activity of EGFR in all 3 cell lines. Interestingly, in the 2 non-sensitive cell lines the initially 

inhibited AKT activation was gradually recovered at later time points on both serine473 and 

threonine308 residues while the AKT activation was substantially inhibited in NCI-H2126 cells. 
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Additionally, the Jak2-STAT3 signaling axis in A549 and NCI-H2023 cells have been 

demonstrated to be more refractory in response to gefitinib exposure than NCI-H2126 cells, 

which is in agreement with bioinformatics analysis. Inhibition of EGFR by gefitinib is expected 

to down-regulate STAT3 activity considering that STAT family proteins, STAT3 in particular, 

play an essential role in EGFR-mediated cellular functions. However, in both non-sensitive 

Figure 2.2 Sensitive and non-sensitive NSCLC cell lines show distinct responses to gefitinib 
treatment. (A) Cell Viability Assay for the percentage of viable cells in A549, NCI-H2023 cells 
(non-sensitive NSCLC cell lines) and NCI-H2026 cells (sensitive cell line) after 48-hour 
exposure to gefitinib ranging from 1µM to 16µM. (B) Western blot analysis shows different 
effects of gefitinib on multiple protein regulators involved in EGFR signaling pathway between 
A549, NCI-H2023 and NCI-H2126 cells.  (C) The expression level and activity of EGFR, AKT 
and STAT3 in A549 cells treated with gefitinib at 4μM (left panel) and 8μM (right panel) for 
indicated time periods.  
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cell lines, A549 and NCI-H2023, time course test showed that gefitinib treatment, in fact, 

induces STAT3 activation. When exposed to gefitinib at 4μM, a rapid increase of 

phosphorylation of STAT3 on tyrosine 705 residues was observed. Such gefitinib-induced 

cellular responses were confirmed by more detailed follow-up experiments on A549 cells 

which involved more time points and doses (4μM and 8μM) of gefitinib treatment (Fig.2.2C). 

Interestingly, we noticed that the trend of gefitinib-induced STAT3 activation was accordant 

with the recovery pattern of AKT after gefitinib treatment, indicating potential interactions 

between these two pathways. While in sensitive cell line, NCI-H2126 cells, the activity of 

STAT3 is time-dependently suppressed on both tyrosine705 and serine727 residues, which 

is a significant difference between non-sensitive and sensitive cell lines (Fig.2.2B).   

AKT recovery is not due to re-activation of the EGFR by gefitinib. EGFR has been 

viewed as one of the key upstream kinases responsible for growth factor-induced AKT 

activation. To determine whether the observed recovery of AKT activation is due to failed 

inhibition of EGFR by gefitinib, we measured the levels of internalization and phosphorylation 

of EGFR in response to gefitinib. In immunofluorescent staining assay, gefitinib treatment 

induced a fast and sustained internalization of the EGFR (Fig.2.3A). After treatment of the 

cells with 4 μM gefitinib, a gradual translocation of the EGFR from cell membrane to 

intracellular vesicles and finally to the perinuclear area was observed, indicating a constitutive 

and effective inhibition of the EGFR by gefitinib. To further validate the inhibitory effect of 

gefitinib on EGFR, we next measured the phosphorylation status of the EGFR in the cells 

treated with gefitinib. Again, the time course studies demonstrated a rapid recovery of AKT 

phosphorylation in both serine 473 (S473) and threonine 308 (T308) residues within 6 h 

following the initial inhibition, especially in the cells treated with 4μM gefitinib (Fig.2.3B). Semi-

quantification of the AKT phosphorylation suggested about 40-60% recovery of AKT 
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activation at the 4 to 6 h time points of gefitinib treatment (Fig.2.3C). However, there is no 

similar recovery pattern of EGFR phosphorylation following gefitinib treatment. At both 4 and 

8 μM gefitinib treatments, phosphorylation of Y1068 and T669 of EGFR was substantially 

inhibited from the earlier to later time points (Fig. 2.3B). These data, thus, suggest that the 

AKT recovery is not due to failed inhibition of EGFR by gefitinib. 

Figure 2.3 Gefitinib inhibits EGFR constitutively and substantially. (A) Immunofluorescence test 
shows the process of internalization of EGFR at proceeding time points after treatment of 
gefitinib in A549 cells. (B) Gefitinib treatment induced continuous inhibition of EGFR 
phosphorylation on tyrosine 1068 (Y1068) and threonine 669 (T669) without recovery at the 
later time points. (C) Semi-quantification of AKT recovery following gefitinib treatment. 
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Inhibition of STAT3 prevented recovery of AKT activation in gefitinib-treated 

cells. It has been well-documented that STAT3 signaling pathway contributes to AKT 

activation in response to a number of extracellular and intracellular signals. More recently, 

STAT3-AKT activation loop has been uncovered in lung epithelial cells. Based on that 

rationale, we hypothesized that gefitinib-induced STAT3 activation is responsible for the 

sequential recovery of AKT phosphorylation. To test that, we co-treated cells with Stattic, a 

Figure 2.4 Chemical inhibitor and gene silencing of STAT3 suppresses succeeding recovery 
of AKT activation after gefitinib treatment. (A) Immunoblotting analysis of expressions and 
activities of EGFR, AKT, STAT3 and ERK under time-dependent treatment with 4µM gefitinib 
combined with or without 100 µM Stattic (STAT3 inhibitor) for up to 6 hours in A549 cells. (B) 
Silencing STAT3 by siRNA diminishes gefitinib-induced AKT recovery in A549 cells. (C) Semi-
quantification of the AKT S473 phosphorylation in the cells treated with gefitinib and 
transfected with control siRNA (siCtrl, left panel) or STAT3 siRNA (siSTAT3, right panel). 
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STAT3 inhibitor, which potently downregulates its phosphorylation without affecting the total 

amount of STAT3. As shown in the Figure 2.4A, when STAT3 function was inhibited, the 

recovery pattern of AKT was also eliminated even when EGFR was hyperactivated possibly 

by the treatment of STAT3 inhibitor, Stattic. In order to exclude the potential off-target effects 

of the chemical inhibitor, we further employed a siRNA-based gene silencing strategy to 

confirm the above observation. When the cells were transfected with STAT3 specific siRNA, 

siSTAT3, the total amount and activity of STAT3 were both reduced and the recovery pattern 

of AKT was eliminated, though the basal level of AKT phosphorylation was elevated. In 

contrast, the cells transfected with control siRNA or without transfection showed no inhibitory 

effects on either STAT3 activation or the AKT recovery (Fig.2.4B and 2.4C). 

Gefitinib promotes physical binding of STAT3 to EGFR. In receptor tyrosine 

kinase-dependent signaling, STAT3 activation is increased by binding to certain STAT3 

docking sites on EGFR c-terminal domains. In order to determine the direct physical 

interaction between STAT3 and EGFR, immuno-precipitation assay was performed. As 

shown in Figure 2.5A, gefitinib treatment induced potent binding between STAT3 and EGFR 

when identical amount of total protein was used for pull-down by anti-STAT3 antibody. 

Figure 2.5 Gefitinib promotes EGFR-STAT3 interaction. (A) Immunoprecipitation assay (left 
pannel) demonstrates direct physical binding of EGFR and STAT3 induced by gefitinib 
treatment. Cells were treated with 8uM gefitinib for 6 hours. The samples were precipitated with 
STAT3 antibody and detected using antibodies against EGFR and STAT3. (B) Immunoblotting 
analysis shows the effect of gefitinib on SOCS1 and SOCS3 in A549 cells. 
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Another fundamental signaling pathway leading to STAT3 activation is cytokine pathway in 

which STAT3 is activated by JAK family proteins, which is negatively regulated by the 

suppressor of cytokine signaling proteins (SOCS), such as SOCS1 and SOCS3. In order to 

identify the potential role of the regulators in cytokine-activated pathway, we carried out 

another time course study to determine the levels of the SOCS proteins. Level of SOCS3 is 

reduced in cells treated with 4uM and 8uM gefitinib, while significant reduction of SOCS1 is 

observed in 8uM group only (Fig.2.5B), suggesting that gefitinib is able to inhibit SOCS 

proteins in a manner of dose-dependency, which accounted for an alternative mechanism 

contributing to gefitinib-induced STAT3 activation. 

STAT3 inhibition sensitizes non-sensitive NSCLC cells to gefitinib treatment in 

vitro. Since gefitinib has been shown to induce STAT3 activation and subsequent AKT 

recovery (Fig.2.2), we were interested in if combinational suppression of EGFR and STAT3 

could overcome the intrinsic insensitivity of certain NSCLC cells. A549 cells were exposed to 

dose-dependent treatment of gefitinib (2-8μM) in combination with STAT3 inhibitor (5μM) for 

24 h and 48 h, respectively, before cell viability was examined and analyzed. As shown in 

Figure 2.6 STAT3 inhibitor enhances the inhibitory effect of gefitinib on cell growth. Cell 
Viability Assay Kit was used to stain viable cells. Data show the relative percentage of viable 
A549 cells after exposed to gefitinib ranging from 2µM to 8µM in the absence or presence of 
Stattic for 24 hours (A) and 48 hours (B), respectively. (P<0.01 in both tests) 
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Figure 2.6, combinational STAT3 inhibition significantly fortifies the anti-cell growth effects of 

gefitinib in A549 cells compared to the group of gefitinib alone. 

 NSCLC cells with acquired gefitinib resistance (GR) exhibit aggressive 

phenotype. In order to study the mechanisms of acquired resistance, we have established a 

Figure 2.7 Gefitinib resistant cells exhibit enhanced drug resistance and aggressiveness. 
(A) Cell Viability Assay for the percentage of viable cells in gefitinib resistant (GR) and 
parental cells when exposed to gefitinib ranging from 2µM to 8µM. (B) Soft agar assay 
for GR cells and parental cells. Colonies with a diameter larger than 200µm and an area 
over 30000 µm2 were considered as qualified, as indicated by the white arrows. (C) Cell 

migration and invasion tests for GR cells and parental cells, summary of results and 
typical photos are presented. (P<0.05 in all tests)  
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gefitinib-resistant (GR) cell line derived from A549 cell line (human NSCLC cell line) via long-

term drug exposure. GR cells have been demonstrated to be significantly more resistant to 

gefitinib treatment than Parental cells through dose-dependent treatment to gefitinib for 24h 

and 48h (Fig.2.7A). It has been reported that about 80% patients with acquired resistance 

against EGFR TKIs suffer from rapid disease progression and over half of the cases are 

severe manifestations including intrapulmonary metastasis, intraperitoneal progression and 

intracranial progression. Through colony formation assay and migration and invasion tests 

(Fig.2.7B and 2.7C), we have demonstrated that resistant cells exhibit enhanced capability of 

anchorage-independent growth, migration and invasion, which recapitulated previous clinical 

observations. 

STAT3 hyperactivation and other mechanisms are implicated in GR cells. In 

order to fully characterize the genes and potential signaling pathways which give rise to 

acquired resistance, we performed microarray 

analysis on Parental cells, GR cells and GR cells 

treated with STAT3 inhibitor. Then we filtered 

out the DEGs in the whole expression data 

based on the following selection criteria: (1) 

Log2 value for fold change ≥ 1 and P < 0.05. (2) 

Log2 ratios= NA and the differences of intensity 

between the two samples >=1000. 243 identified 

DEGs were clustered and presented in the 

heatmap (Fig.2.8A).  

We next performed Gene Set Enrichment 

Analysis (GSEA) on GR cells versus parental 

cells to investigate the signaling pathways that 
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are altered in the GR cells. As shown in Figure 2.8B, the transcripts involved in ERBB (EGFR 

is also known as ERBB1) signaling pathway are significantly downregulated in GR cells after 

long-term exposure to gefitinib. Interestingly, further analysis on 2 pathways closely related 

to EGFR signaling pathway exhibit opposite enrichment trends. PI3K-AKT-MTOR pathway 

Figure 2.8 GR cells exhibited unique gene expression profiles and hyperactivated STAT3 

signaling. (A) Top 243 differentially expressed genes (DEGs) was selected for clustering analysis. 
Up- and down-regulated genes are represented in red and green colors, respectively. An intensity 
filter was used to select genes where the difference between the maximum and minimum intensity 

values exceeds 35,000 among all microarrays. (P: parental cells, GR: GR cells, GS: GR cells 
treated with Sttatic) (B) GSEA was performed on GR cells vs. parental cells. Plots show the 
enrichment of transcripts involved in ERBB, PI3K-AKT and JAK-STAT3 signaling pathways. 

Normalized enrichment score (NES) and p-value are shown in the figure. (C) Immunoblotting 
analysis showing the differences in major signaling regulators between GR cells and parental cells. 
(D) Enrichment plots show significantly altered gene sets associated with fundamental cellular 

functions in GR cells. (E) Expression levels of major malignancy-related DEGs in GR cells and (F) 
their locations on KEGG cancer pathway map, upregulated and downregulated genes are 
indicated in red and green, respectively.  
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shows a sharp descending curve while majority of genes in IL6-JAK-STAT3 pathway are 

positively enriched in GR cells. Considering that AKT and STAT3 are both important 

downstream regulators in EGFR signaling pathway and they frequently interact with each 

other, such discrepancy may offset the statistical power of GESA on both gene sets (p-values 

are both larger than 0.05). However, analysis of the leading-edge transcripts from both 

pathways strongly suggest that STAT3 pathway is hyperactivated while AKT and the whole 

EGFR pathways are both suppressed in GR cells. Subsequent molecular biology 

experiments have reinforced the concepts of the bioinformatics analysis (Fig.2.8C). It is 

noteworthy that the phosphorylation level of STAT3 is significantly enhanced on serine727 

(S727) but suppressed on tyrosine705 (Y705) residue in GR cells. This shift of activation site 

may be explained by the observation that S727 phosphorylation can negatively regulate 

tyrosine phosphorylation of STAT3. Since previous studies have also demonstrated that S727 

phosphorylation is required for maximizing the transcriptional activity of STAT3, the 

constitutive serine activation in GR cells may reflect a constant upregulation of STAT3 target 

genes, including C-MYC, which in turn facilitate cell survival and counteract gefitinib-induced 

responses. In agreement with this notion, we also observed increased level of C-MYC protein, 

a well-established gene target of STAT3, in GR cells (Fig.2.8C). GSEA also identified that 

DNA repair, P53 pathway and Oxidative Phosphorylation (OXPHOS) are significantly 

downregulated in GR cells which may account for other important mechanisms leading to 

acquired drug resistance (Fig.2.8D). 

We next determined the DEGs in GR cells compared to Parental cells and applied 

signaling pathway impact analysis using KEGG database. The following 8 pathways were 

highlighted: (1) Complement and coagulation cascades, (2) Focal adhesion, (3) ECM-

receptor interaction, (4) Cell adhesion molecules (CAMs), (5) Small cell lung cancer, (6) 

Leukocyte transendothelial migration, (7) Nitrogen metabolism and (8) Pathways in cancer. 
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The “Pathways in cancer” is shown as representative. Expression levels of the transcripts 

involved are listed (Fig.2.8E) as well as their locations and functions in the pathway (Fig.2.8F).  

Figure 2.9 STAT3 inhibition overcomes gefitinib resistance by simultaneously suppressing 
multiple survival-related pathways. (A) Cell viability assay shows the percentage of viable cells of 
GR and parental cell lines after 48-hour exposure to gefitinib ranging from 2µM to 8µM in the 

absence or presence of 5µM Stattic. P-value table is shown in the figure. (B) Immunoblotting 
shows the impact of Stattic and gefitinib co-treatment on STAT3 signaling pathway in GR cells. 
(C) GSEA was performed on GR cells vs. GS cells. Plots show the enrichment of transcripts 

involved in JAK-STAT3, MAPK, TGF BETA and typical NSCLC signaling pathways. (D) 
Expression levels of major malignancy-related DEGs after Stattic treatment. (E) Visualization of 
the identified DEGs on KEGG cancer pathway map, upregulated and downregulated genes are 

highlighted in red and green, respectively. 
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STAT3 inhibition overcomes acquired resistance to gefitinib by downregulating 

major survival-related pathways. Since STAT3 hyperactivation has been implicated as an 

important resistance mechanism, we propose STAT3 co-inhibition as a rational method to 

overcome the acquired drug resistance in the current model. To test that hypothesis, we 

performed 48-hour cell viability test on Parental cells and GR cells exposed to dose-

dependent treatment of gefitinib (2-8μM). Another group of GR cells were treated in 

combination with STAT3 inhibitor, Stattic (5μM). As shown in Figure 2.9A, combinational 

STAT3 inhibition significantly assisted the anti-cell growth effects of gefitinib in GR cells, 

especially at high gefitinib doses like 4μM and 8μM. 

Then we moved on to investigate the underlying mechanisms. Our biomedical studies 

demonstrated that 100μM Stattic treatment is capable of instantly and effectively inhibiting 

serine phosphorylation of STAT3 and its transcription activity on its target gene, C-MYC, in 

GR cells (Fig.2.9B). Microarray analysis was performed on STAT3-inhibited GR (GS) cells in 

parallel with Parental cells and GR cells (Fig.2.8A). Then we conducted GSEA on GS over 

GR cells to characterize the enrichment of intracellular signaling pathways. As shown in the 

plots (Fig.2.9C), GSEA demonstrated that major gene sets associated with IL6-JAK-STAT3, 

MAPK and TGF-BETA pathways were all downregulated following Stattic treatment, which 

led to significant suppression of genes found in “Non-Small Cell Lung Cancer” pathway. We 

also carried out pathway impact analysis on the DEGs identified between GS and GR cells. 

In addition to the 4 pathways determined by GSEA, ErbB signaling pathway, mTOR signaling 

pathway and VEGF signaling pathway were also found to be affected by STAT3 inhibitor. 

Again, expressions of major DEGs were summarized (Fig.2.9D) and mapped to the KEGG’s 

“Pathway in cancers” (Fig.2.9E).  
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Discussion 

Drug resistance, both primary and secondary, remains a major obstacle to successful 

cure of NSCLC via EGFR TKI-based therapies. Biased drug responses caused by primary 

resistance make it extremely hard to predict efficacy in patients and largely limit the patient 

population who can benefit from EGFR TKI. Even those patients initially sensitive to EGFR 

targeting therapy will develop secondary resistance (acquired resistance) and the subsequent 

relapse and progression of disease finally leads to treatment failure. The observations that 

several resistance mechanisms frequently overlap with each other lift this problem to a higher 

level of complexity which urgently requires co-inhibition of multiple targets to replace the 

current “one gene, one drug ” strategy. Despite some progresses, efforts aiming to selectively 

co-target some major resistance mechanisms show limited efficacy both in vitro and in vivo, 

strongly indicating the possibility of some unknown mechanisms which also contribute to 

resistance against EGFR TKI. In order to successfully carry out the combinational targeting 

strategy, revealing the hiding resistance mechanisms is undoubtedly the prerequisite, thus, 

explorations into such mechanisms are of great scientific and clinical significance.  

It has long been believed that EGFR TKI, such as gefitinib, function through selectively 

binding the tyrosine kinase domain on EGFR and suppressing its major downstream pro-

survival and anti-apoptosis signaling pathways, including STAT3, AKT and ERK. Our study, 

however, identifies a unique gefitinib-induced STAT3 activation pattern in non-sensitive 

NSCLC cell lines, A549 and NCI-H2023, which differs greatly from the classic tyrosine kinase-

dependent pathway of STAT3 activation. In addition, based on previously defined STAT3-

AKT axis in lung epithelial cells, we have further demonstrated that phosphorylation level of 

AKT substantially recovers rapidly from initial inhibition within 6 hours after gefitinib treatment 

and this process is dependent on the synchronous gefitinib-induced STAT3 activation. 

Considering the pivotal role of STAT3 and AKT in anti-apoptotic machinery, our study 
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answers, at least partly, why certain types of lung cancer cells do not respond well to gefitinib -

induced cell death even if EGFR is overexpressed in these cells. Moreover, this notion has 

been further substantiated by the cell proliferation assay using combinational inhibition of 

EGFR and STAT3. Co-targeting of STAT3 can significantly enhance the anti-tumor efficacy 

of gefitinib, indicating a promising synergistic strategy to enhance efficacy of gefitinib in 

NSCLC.  

Activation of STAT3 can be achieved from receptor tyrosine kinase (RTK) pathway, 

including EGFR-centered signaling, or cytokine signaling pathway (also known as RTK-

independent pathway), like Interleukin-6/JAK/STAT3 pathway. In an effort to explore the 

mechanisms underlying gefitinib-induced STAT3 activation, we demonstrate that gefitinib not 

only promotes the direct binding of EGFR and STAT3 but also, surprisingly, affects the 

receptor tyrosine kinase-independent pathway of STAT3 activation. Multiple tyrosine residues 

on the C-tails of EGFR, including Y1068, Y1086 and Y1045, have been identified as docking 

sites where STAT3 uses its SH2 and DNA-binding domains to interact with EGFR and gets 

activated as a consequence in 293 cells. In agreement with these researches, our study 

shows that gefitinib treatment is able to directly promote the physical interaction between 

EGFR and STAT3 and thus regulate its activity in A549 cells. More interestingly, we have 

also revealed that gefitinib down regulates another important upstream regulator of STAT3, 

the SOCS family proteins. As shown in Figure 2.5A, gefitinib at 4μM is able to reduce the 

level of SOCS3, while higher concentration (8μM) is required to more effectively suppress 

both SOCS1 and SOCS3, suggesting that gefitinib also induces STAT3 activation by altering 

cytokine signaling. Considering SOCS proteins are also recruited by certain regulatory region 

of EGFR, extending from Y1114 to E1172, to block STAT3 activation, reduced SOCS proteins 

by gefitinib may also abrogate the intrinsic inhibitory effects of EGFR on STAT3.  In NSCLC 

cells, differences in mutation status of EGFR, like “activating mutations” and “resistant 
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mutations”, and extent of addiction to EGFR signaling are fundamental factors determining 

sensitivity to gefitinib.  Established evidence has suggested an amplified expression of the 

wild-type EGFR are more frequent in prevalence yet associated with less sensitivity to 

gefitinib treatment. The results of this study have revealed novel mechanisms modulating 

cellular responses to gefitinib, especially in cells with overexpressed wild-type EGFR, which 

will provide valuable information to optimize future anti-tumor therapy in lung cancer patients. 

On the other hand, this study also sheds light on the acquired resistance of gefitinib. 

Through systemically profiling the global gene expressions and molecular biology 

experiments, we have demonstrated there are multiple resistance mechanisms occurring in 

the GR cells simultaneously, which include both novel mechanisms and classic ones as 

previously reported. In our model, EGFR itself has not become more refractory to gefitinib 

treatment than the control cell line, moreover, GSEA further indicates that EGFR pathway is 

significantly suppressed in GR cells after long-term exposure to gefitinib. These results 

indicate that the mechanisms of acquired resistance in this model are totally different from 

the most classic and common one, T790M “gate keeper” mutation of EGFR. Accordingly, 

PI3K-AKT-mTOR pathway also tends to be suppressed in GR cells compared to Parental 

cells (p=0.08).  

Interestingly, we noticed that STAT3 is hyperactivated in our model. Similarly, in a 

previous study, increased phosphorylation of STAT3 on tyrosine 705 (Y705) residue is 

observed in another gefitinib-resistant lung cancer cell line also derived from A549 cells. 

Enhanced STAT3 phosphorylation has also been observed in EGFR mAb treatment-resistant 

cell models of head and neck squamous carcinoma (HNSCC) and bladder cancer. Our model, 

however, exhibits a unique hyperactivation pattern of STAT3, phosphorylation level is 

significantly increased on serine727 (S727) but inhibited on Y705 residue in GR cells. 

Considering that S727 activation is required for maximized transcription activity of STAT3, 
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this unique shift of phosphorylation sites might cause constant upregulation of STAT3 target 

genes, for example, C-MYC. Similarly, many major genes associated with STAT3 pathway 

also tend to be enriched in GR cells, even though EGFR and AKT pathways are both 

suppressed. We also noticed that gene sets related to DNA repair function, P53 pathway and 

Oxidative Phosphorylation (OXPHOS) capacity are all significantly downregulated in GR cells. 

These results suggest that GR cells might be predisposed to accumulating DNA damages 

and mutations, escape of apoptosis, malignant energy metabolism, which are all hallmarks 

of cancer pathogenesis and development. Additionally, we have demonstrated that FGF2 and 

FGFR1 are both significantly upregulated in GR cells, which repeated a previously reported 

resistance mechanism, FGF2-FGFR1 autocrine bypass loop, in several other gefitinib-

resistant NSCLC cell lines.  

Rational co-inhibition of STAT3 assisted gefitinib’s inhibitory effects on GR cells, 

especially at relatively high concentrations of gefitinib, like 4µM and 8µM. Our data further 

demonstrated that effective STAT3 inhibition suppresses several pathways closely related to 

cell growth and proliferation simultaneously, including MAPK, TGF-beta, EGFR and AKT-

mTOR pathways. When interrogating the expression profiles in details, we found that STAT3 

inhibition caused significant downregulation of PIK3CD, AKT1, AKT2 and AKT3. This result 

not only confirms the STAT3-AKT activation loop defined in earlier steps of this study, but 

also provides answers for the dramatic efficacy of targeting of STAT3 or subsequent 

AKT/mTOR in overcoming acquired resistance in both in vitro and in vivo lung cancer models 

receiving EGFR TKI-based therapy. In addition, Stattic treatment also caused reduced 

transcription of FGF2 and MET, both of which are key regulators modulating previously-

defined alternative pathways in EGFR TKI-resistant lung cancers. Admittedly, it has been 

demonstrated that the evolutionary paths leading lung cancer cells to resistance are highly 

variable and heterogeneous, but our data suggest that combinational targeting of STAT3 and 
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EGFR can be a promising strategy to conquer acquired resistance, at least in certain 

refractory lung cancers. In the future, more efforts are required to fully elucidate and 

document the resistance mechanisms, which will make the fundamental step for development 

of successful combinational therapy with higher selectivity and efficacy against advanced 

NSCLC. 
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Appendix A Table S1.1 Full list of significant MDIG pull-downs in H929 cells 
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Appendix B Table S1.2 Full list of significant C-MYC pull-downs in H929 cells  
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ABSTRACT 
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Aberrant intracellular signaling pathway is one of the major driving forces of 

malignancy through multiple stages of human cancers. Our study demonstrates that in cancer 

cells, the signaling pathways are profoundly and actively intertwined with each other so they 

can synergistically affect cell biology, including promoting development of malignancy and 

compensating the loss of proliferation or survival signals in responses to anti-tumor drug. 

Moreover, cancer cells can also adopt “non-canonical” mechanisms to modulate the activities 

of key protein regulators so the whole signaling pathway is strengthened.  

In the first project, we performed integrative studies to investigate the oncogenic role 

of a WTC (World Trade Center) dust-induced regulator, MDIG, in multiple myeloma (MM). 

MM is a malignancy of plasma cells located within bone-marrow compartment and several 

post 9/11 health surveillance programs and epidemiological studies suggested an increased 

incidence rate of multiple myeloma (MM) among the individuals who intensively exposed to 

WTC dust. However, the potential connections between WTC dust and MM remain to be 

elucidated. Expressions of MDIG were investigated in bronchial epithelial cells, B cells, MM 

cell lines and in the bone marrow specimens from the MM patients. We found that WTC dust 

is potent in inducing MDIG protein and/or mRNA in bronchial epithelial cells, B cells and MM 
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cell lines. An increased MDIG expression in MM bone marrow was observed, which is 

associated with the disease progression and prognosis of the MM patients.  Using integrative 

genomics and proteomics approaches, we further demonstrated that in MM cell lines, MDIG 

directly interacts with C-MYC and JAK1, which contributes to hyperactivation of the JAK-

STAT3 signaling important for the pathogenesis of MM. Genetic silencing of MDIG reduced 

activity of the major downstream effectors in the JAK-STAT3 pathway. Our results indicate 

that WTC dust induced-MDIG overexpression bridges C-MYC pathway and STAT3 pathway 

in MM, which is essential for the tumorigenesis of MM. 

In the second project, we focused on the underlying mechanisms of both primary and 

secondary resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR 

TKI), including gefitinib, in Non-small cell lung cancer (NSCLC), which are two major 

obstacles compromising the clinical success of targeted therapy.  In the part studying primary 

resistance, we observed that JAK2-STAT3 signaling axis in non-sensitive lung cancer cell 

lines is highly refractory to gefitinib treatment. Follow-up experiments further revealed a 

unique STAT3-dependent AKT restoration pattern in non-sensitive lung cancer cells, which 

impairs the efficacy of gefitinib. Mechanistically, gefitinib increased physical binding between 

EGFR and STAT3, which de-repressed STAT3 from SOCS3, an upstream suppressor of 

STAT3. Such a de-repression of STAT3 in turn fostered AKT activation. Genetic or 

pharmacological inhibition of STAT3 abrogated AKT activation and combined gefitinib with 

STAT3 inhibition synergistically reduced the growth of the tumor cells. In order to study the 

mechanisms of secondary resistance (acquired resistance), we established a gefitinib -

resistant lung cancer (GR) cell line. Through profiling the gene expression pattern and 

investigating the alterations of intracellular signaling pathways, we discovered multiple 

resistance mechanisms in GR cells, including a unique hyperactivation pattern of STAT3. A 

rational co-inhibition of STAT3 and EGFR simultaneously suppressed several survival-related 
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pathways in GR cells. As a result, such combinational targeting re-sensitized the GR cells to 

gefitinib treatment. Taken together, our studies have unraveled novel mechanisms of 

resistance to EGFR TKI in lung cancer and have provided important information for rationale-

based combinational targeting strategies to overcome drug resistance. 
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